Expression of T Helper 17 and Regulatory T Cell Cytokines and Molecules in Glomerulonephritis Class IV Systemic Lupus Erythematosus

Maryam Rastin,1 Samaneh Soltani,1 Fatemeh Nazemian,2 Maryam Sahebari,3 Seiede Zahra Mirfeizi,4 Nafiseh Tabasi,1 Mahmoud Mahmoudi1

Introduction. Lupus nephritis is a serious organ involvement with unknown etiology, and glomerulonephritis class IV is one of the most severe forms of the disease which correlates with poor prognosis and death. Immunological abnormalities are implicated in the expression of lupus nephritis. In this study, we examined some T helper 17 and regulatory T-related cytokines and molecules in systemic lupus erythematosus patients with glomerulonephritis class IV.

Materials and Methods. The study group comprised of 20 glomerulonephritis class IV SLE patients and 20 sex- and age-matched SLE patients without kidney involvement as control group. Blood samples was collected from each participant, lymphocytes were isolated, and RNA was extracted from lymphocytes. Then cDNA was synthesized using reverse transcription enzyme, and finally using specific primers and probes, the expression levels of forkhead box P3 (Foxp3), transforming growth factor (TGF)-β, interferon (IFN)-γ, interleukin (IL)-6, and IL-17 genes were analyzed by real-time polymerase chain reaction based on the TaqMan method.

Results. The expression levels of IL-6, IL-17, IFN-γ, and Foxp3 genes were significantly higher in SLE patients with glomerulonephritis class IV than those with non-nephritis SLE. However, the expression of TGF-β was not significantly different between the SLE patients with and without glomerulonephritis class IV involvement.

Conclusions. According to our results, it seems that in class IV glomerulonephritis patients, increased Foxp3-producing regulatory T cells has an imperfect capacity to control the pathogenic IL-17- and IFN-g-producing cells.

Keywords. systemic lupus erythematous, T helper 17 lymphocyte, regulatory T lymphocyte, diffuse proliferative glomerulonephritis

INTRODUCTION
Systemic lupus erythematous (SLE) is a complex autoimmune multisystem disease characterized by the production of auto-antibodies and deposition of immune complexes in various organs.1 Kidney involvement is one of the most frequent serious organ manifestations induced by the presence of immune complexes at various sites of the glomeruli.2 Glomerular pathological findings of lupus nephritis (LN) were originally categorized in 6 classes from class I to VI.3 Glomerulonephritis class IV is called diffuse proliferative glomerulonephritis and has the highest rate of mortality and prevalence compared to other classes.4
The pathogenesis of LN is incompletely understood. Production of nephritogenic anti-double-stranded DNA autoantibodies, in situ formation of immune complexes, and deposition of previously formed immune complexes in the kidney primes inflammatory events leading to the kidney damage. Regulatory T cells (CD4+CD25+Foxp3+) are responsible for maintenance of tolerance and play a protective role in SLE. Regulatory T cells play an important role in controlling unwanted immune responses, and distressed balance between regulatory and effector T helper 17 cells are implicated in the pathogenesis of LN. The defective number or function of this population promotes hyperactivated responses in SLE patients.

T helper 17 cells have recently been introduced and are known as an effector subset of T helper cells which are present in the damaged organs in SLE patients. These cells produce interleukin (IL)-17 and have a pathogenic role in the tissue injury in LN. T cells polarization is affected by cytokines milieu and inflammatory conditions. Interleukin-6, in the presence of transforming growth factor (TGF)-β promotes differentiation of naive T helper cells to T helper 17 subset, while presence of TGF-β in the absence of IL-6 converts naive T helper cells to regulatory T cells, with prominent immunomodulatory effects.

In the some classes of LN, predominance of T helper 2 cells was reported, but at the late stages of class IV glomerulonephritis, increased presence of interferon (IFN)-γ and T helper 1 cells was identified, which could worsen nephritis. Overproduction of T helper 1 and T helper 17 cytokines and defective number and function of regulatory T cells could promote nephritogenic conditions in LN.

In this study, we investigated the expression of some T helper 17 and regulatory T cell-related cytokines and molecules in glomerulonephritis class IV and non-nephritis SLE patients to better understand the impression of regulatory T and T helper 17 cells in the pathogenesis of LN.

MATERIALS AND METHODS

Study participants comprised of 40 SLE patients who fulfilled at least 4 of the 1997 revised criteria of American Rheumatism Association for the classification of SLE, and were recruited between 2009 and 2010 by nephrologists or rheumatologists. The SLE patients were divided into 2 groups: 20 patients with glomerulonephritis class IV whose disease was confirmed with renal biopsy by a pathologist based on the World Health Organization classification’s system, and 20 sex- and age-matched non-nephritis SLE patients acting as control group. Patients with other classes of LN and those who received cytotoxic drugs were excluded from the study.

The study was approved by the ethics committee of Mashhad University of Medical Sciences and written informed consent was taken from all participants.

RNA extraction and cDNA synthesis

Ten mL peripheral blood in ethylenediaminetetraacetic acid was collected from each participant. Peripheral blood mononuclear cells were isolated using density gradient centrifugation on Ficoll-Hypaque according to the manufacturer’s instruction (Gibco). Total mRNA was extracted using Tripure Reagent (Roche, Germany). Then, quality and integrity of the total RNA was assessed by electrophoresis on 2% agarose gel (Roche, Germany). Purity of extracted RNA was assessed by relative absorbance at 260:280 nm.

The total amount of mRNA was reverse transcribed using 1 μg of RNA in a volume of 20-μL solution containing 1μL of random hexamers, 4 μL of 5X buffer, 2 μL of dNTP (Roche), 0.5 μL of RNasin (Fermentas), and 1 μL of reverse transcription (RT enzyme, M-MuLV, Fermentas). Reverse transcription was performed as follows: 95°C for 10 minutes, 42°C for 60 minutes, and 70°C for 10 minutes. cDNAs were stored at -20°C for later analysis.

Real-time Polymerase Chain Reaction

The cDNA samples were subjected to real-time quantitative polymerase chain reaction (PCR) analysis. Quantitative real-time PCR was performed using the TaqMan method. The primers and probes were designed using Beacon Designer software to recognize IL-17, IL-6, IFN-γ, TGF-β, forkhead box P3 (Foxp3), and the reference gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Table 1). In order to confirm the gene specificity for a single amplification product, a Blast search of the selected primers was performed in the Gene Bank sequence database. TaqMan primers and probes are listed in Table 1. Quantitative real-time PCR amplification
Gene expression levels were performed in a total reaction volume of 20 μL and consisted of initial denaturation (95°C, 10 minutes) and 45 cycles for 95°C, 10 seconds, and 60°C, 45 seconds. Gene expression of each target was normalized to GAPDH as a reference gene. Each sample was run in duplicate.

Statistically analysis

Statistical analyses were performed by using the SPSS software (Statistical Package for the Social Sciences, version 21.0, SPSS Inc, Chicago, IL, USA). The Mann-Whitney test was used for nonparametric data and the Student t test was used for unpaired data. All data were reported as mean ± standard deviation, and P values less than .05 were considered significant.

RESULTS

Clinical Findings

The demographic and clinical data of the present study participants are summarized in Table 2. Clinical baseline data, the hematological and urinary characteristics of each group are shown in Tables 3 and 4. In SLE patients with class IV glomerulonephritis, the total number of leukocytes was significantly higher (P = .047), while the number of erythrocytes was significantly lower than the controls (P = .001), and erythrocyte sedimentation rate was higher (P = .001). In patients with nephritis, blood urea nitrogen level (48.45 ± 35.9 mg/dL) and serum creatinine level (1.52 ± 1.4) were higher.

Gene Expression Levels

The comparison of gene expression of molecules related to T helper 1, T helper 17, and regulatory T cells between the glomerulonephritis class IV SLE patients and the control group is shown in the Figure. There was a significant increase in the gene expression of IL-17 (P < .01), IL-6 (P < .01), IFN-γ, and Foxp3 (P < .001) in the SLE patients with LN in comparison to non-nephritis SLE patients. No significant difference was observed in the expression level of TGF-β between the two groups.
DISCUSSION

Lupus nephritis is a serious organ involvement in SLE characterized by inflammation within the glomerulus. Glomerulonephritis class IV is one of the most severe forms of LN which correlates with poor prognosis and develops to end-stage disease and death. Loss of tolerance and deposition and in situ production of immune complexes are one of the hallmarks of LN, which promotes a chronic inflammatory process in the kidney. Pathogenesis of the LN is unknown and complex. Regulatory T cells are known to have a key role in limiting unwanted inflammatory responses in SLE, and recent studies have shown that there is a distressed balance between regulatory T cells (CD4+CD25+Foxp3+) and pathogenic T helper 17 cells in SLE. Altered rate and function of regulatory T cells and pathogenic T helper 17 cells appear to be involved in the immunopathogenesis of LN.

This study showed that the expression level of IL-17 increased in class IV glomerulonephritis SLE compared to non-nephritis SLE patients. These results are in line with some previous studies. Interleukin-6 is a critical mediator of kidney damage and in LN; increased presence of IL-6 was associated with increased auto-antibody production.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients With Lupus Nephritis</th>
<th>Patients Without Lupus Nephritis</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood urea nitrogen, mg/dL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 to 20</td>
<td>15</td>
<td>75</td>
<td><.05</td>
</tr>
<tr>
<td>20 to 25</td>
<td>55</td>
<td>25</td>
<td><.05</td>
</tr>
<tr>
<td>25 to 50</td>
<td>30</td>
<td>0</td>
<td><.05</td>
</tr>
<tr>
<td>Serum creatinine, mg/dL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 1</td>
<td>30</td>
<td>85</td>
<td><.05</td>
</tr>
<tr>
<td>1 to 1.5</td>
<td>60</td>
<td>15</td>
<td><.05</td>
</tr>
<tr>
<td>> 1.5</td>
<td>10</td>
<td>0</td>
<td><.05</td>
</tr>
<tr>
<td>Serum potassium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 to 4.0</td>
<td>50</td>
<td>60</td>
<td>>.05</td>
</tr>
<tr>
<td>4.0 to 5.5</td>
<td>35</td>
<td>40</td>
<td>>.05</td>
</tr>
<tr>
<td>5.5 to 6.0</td>
<td>15</td>
<td>0</td>
<td>>.05</td>
</tr>
</tbody>
</table>

*Reference ranges were 8 mg/dL to 25 mg/dL for blood urea nitrogen, up to 1.5 mg/dL for serum creatinine, and 3.5 mEq/dL to 5.5 mEq/dL for serum potassium.

Table 4. Urine Parameters in Systemic Lupus Erythematosus Patients With and Without Lupus Nephritis

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Patients With Lupus Nephritis</th>
<th>Patients Without Lupus Nephritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematuria, /HPF*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 5</td>
<td>20</td>
<td>95</td>
</tr>
<tr>
<td>6 to 10</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>11 to 15</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>16 to 20</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>21 to 25</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Proteinuria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>++</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>+++</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Leukocyturia, HPF*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 5</td>
<td>35</td>
<td>85</td>
</tr>
<tr>
<td>6 to 10</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>11 to 15</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>16 to 20</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>21 to 25</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

*Reference range was zero to 1 cells per high-power field.
and disease activity. In some SLE patients, T helper 1 responses predominated and promoted the progression of SLE to active nephritis. Our results showed increased expression of IFN-γ in glomerulonephritis class IV SLE patients, which is the significant cytokine of T helper 1 cells. Some previous studies demonstrated that IFN-g could induce B cells for production of nephritogenic anti-nuclear antibodies that could worsen nephritis in glomerulonephritis class IV. A correlation between the overexpression of IFN-γ with the histological activity index of LN was reported in some previous studies. Several studies demonstrated that double-negative T cells are the main source of both IL-17 and IFN-g in lupus patients with nephritis. Our results showed concurrent increase in the expression of IL-17 and IFN-γ in LN. It is predictable that increased presence of T helper 1 and T helper 1 cells is implicated in worsening the glomerular inflammatory conditions in SLE nephritis. Concomitant presence of IL17-positive and IFN-g-producing cells in LN is resistant to the modulatory effects of regulatory T cells. In the present study, we showed that in SLE patients with nephritis, in spite of the increased expression of Foxp3 (the transcription factor of regulatory T cells), the expression rate of IL-17 and IFN-γ also increased. Considering our results, it seems that regulatory T cells were not able to control the increased population of IL-17-producing cells in glomerulonephritis class IV, which is compatible with some previous studies.

It is well accepted that regulatory T cells play an important role in the control of autoimmune responses, and a decreased number and function of regulatory T cells was implicated in lupus patients. However, the results in different other studies are inconclusive. Some studies confirmed the reduced number and function of regulatory T cells in patients suffering from LN compared to normal subjects; however, Wang and colleagues indicated an increased number of regulatory T cells in LN. Some studies showed increased Foxp3 expression in active LN, while the suppressive function of regulatory T cells decreased. Analysis of Foxp3 mRNA in our study demonstrated increased levels of this molecule in the peripheral blood mononuclear cells of patients with active nephritis. This absorbing paradox between different studies is probably due to the fact that although the overall expression of Foxp3 increases, the suppressive function of regulatory T cells may be imperfect, which is compatible with our results. We showed that in SLE patients with active nephritis, in spite of the increased expression of Foxp3, the expression rate of IL-17 and IFN-g also increased, which demonstrates the defective suppressive function of regulatory T cells. A high level of IL-6 was also supposed to interfere with the regulatory function of regulatory T cells.

CONCLUSIONS
According to our results, it seems that in active LN, increased Foxp3-producing regulatory T cells have an imperfect capacity to control the pathogenic IL-17- and IFN-g-producing cells. Enhanced understanding of the pathogenic mechanisms of LN could foster effective approaches for monitoring disease progression and targeted depletion of effector cells to reduce tissue damage in the kidney.

FINANCIAL SUPPORT
This study was supported by the Research Council of Mashhad University of Medical Sciences (MUMS) Vice President (Grant 87770).

CONFLICT OF INTEREST
None declared.

REFERENCES

Correspondence to:
Mahmoud Mahmoudi
BuAli Sq, Ferdowsi Sq, BuAli Research Institute, Mashhad, Iran
Tel: +98 915 115 6304
E-mail: mahmoudim@mums.ac.ir

Received August 2015
Revised December 2015
Accepted January 2016