Protection Against Doxorubicin-induced Nephropathy by *Plantago major* in Rat

Zohreh Naji Ebrahimi Yazd, 1 Sara Hosseinian, 1 Mohammad Naser Shafei, 1,2 Aloreza Ebrahimzadeh Bideskan, 3 Nazanin Entezari Heravi, 1 Soghra Parhizgar, 1 Samira Shahraki, 1 Zahra Samadi Noshahr, 1 Somayeh Mahzari, 1 Abolfazl Khajavi Rad 1,4

Introduction. Nephropathy is an important side effect of doxorubicin. The aim of the current study was to investigate the protective effect of *Plantago major* extract against doxorubicin-induced functional and histological damage in rat’s kidney.

Materials and Methods. Sixty Albino rats were randomly divided into 6 groups. Doxorubicin, 5 mg/kg, was injected intravenously on the 7th day of the study. Animals were treated with dexamethasone, 0.9 mg/kg, vitamin E, 100 mg/kg, and *P major* extract, 600 mg/kg and 1200 mg/kg, for 7 days before and 4 weeks after doxorubicin administration. Glomerular filtration rate, urea clearance, and urine glucose concentration were determined on the 1st day and 1, 2, 3 and 4 weeks after doxorubicin injection. Histological changes were also examined and the end of the study.

Results. Doxorubicin caused significant decreases in glomerular filtration rate and urea clearance and significant glycosuria and kidney damage. Urea clearance in the rats treated with *P major* showed no significant change between different days of the experiment. Administration of dexamethasone, vitamin E, and low- and high-dose *P major* significantly improved the glycosuria and kidney tissue damage.

Conclusions. These findings suggested that hydroalcoholic extract of *P major* protected renal tissue against doxorubicin-induced nephropathy. The protective effects of *P major* on renal lesions associated with doxorubicin may be due to its antioxidant and anti-inflammatory actions.

INTRODUCTION

Doxorubicin is an anthracycline antibiotic that is used for the treatment of a wide range of malignancies including breast cancer, lymphoma, small cell lung carcinoma, and acute leukemia. In spite of its high antitumor efficacy, the clinical use of doxorubicin has been restricted due to its major side effects mainly cardiotoxicity and nephrotic syndrome, characterized by severe proteinuria, hypoalbuminaemia, hyperlipidemia, and edema. Doxorubicin-induced nephropathy is due to toxic destruction of glomerulus and tubulointerstitial damage.

The mechanisms involved in doxorubicin-induced nephropathy are complex and may include oxidative stress, inflammation, apoptosis, and fibrosis. Recent studies have shown that an increase in free radical generation, lipid peroxidation, and reduction in antioxidant enzymes activity are principal mediators in the development of nephrotic syndrome. In
addition, inflammation has also a major role in
the kidney injury induced by doxorubicin and is
due to the local production of cytokines and other
chemotactic factors. Furthermore, doxorubicin
exerts direct toxic damage to the glomerular
structure leading to proteinuria. In this regard, the
use of antioxidant and anti-inflammatory agents
can effectively improve the renal complications
created by doxorubicin.

Plantago major (P major) is a flowering plant that
belongs to the Plantaginaceae family. Plantago major
contains many effective components including
glycosides, flavonoids, lipids, polysaccharides,
and terpenoids. In traditional medicine, P major has been used for the treatment of fever,
bronchitis, hypertension, and asthma. In various
investigations, P major exhibits many pharmacologic
effects including antioxidant, anti-inflammatory,
analgesic, antimicrobial, and immunomodulatory
actions. Parhizgar and colleagues reported that
oral administration of P major extract protected
against oxidative stress and kidney dysfunction
induced by cisplatin in rats. The aim of this study
was to investigate the effect of hydroalcoholic
extract of P major on doxorubicin-induced kidney
damage in rats.

MATERIALS AND METHODS

Extract Preparation

Plantago major whole plant was collected from
the nature around Mashhad and was identified
by a botanist from the Herbarium of Ferdowsi
University of Mashhad (Mashhad, Iran). The
plant was powdered and was extracted using an
extractor with ethanol (70%). The resulting solution
was purified using a rotary evaporator and kept
at 4°C until use.

Chemicals

Doxorubicin was purchased from Ebewe Pharma
(Austria). Vitamin E powder and dexamethasone
were obtained from Osve (Iran). Serum levels of
creatinine, urea, and glucose were measured using
kits from Pars Azmoon (Iran).

Animals

Sixty male Albino Wistar rats (250 g to 270
were obtained from the Animal House of the
School of Medicine, Mashhad University of Medical
Sciences, Mashhad, Iran. The animals were housed
at room temperature (25 ± 1°C) on a regular 12-
hour light-dark cycle with free access to food and
water ad libitum. All experiments were approved
by the ethics committee of Mashhad University of
Medical Sciences.

Experimental Protocol

The animals were randomly divided into 6 groups
of 10 each as follows: control group, rats that
received normal saline via intravenous tail injection
on the 7th day of experiment; doxorubicin group, rats received doxorubicin, 5 mg/kg, intravenous,
on the 7th day of experiment; dexamethasone-
doxorubicin group, rats received dexamethasone,
0.9 mg/kg, intraperitoneal, 6 consecutive days
before injection of doxorubicin, and 2 weeks after
that for every other day; vitamin E-doxorubicin
group, rats received vitamin E powder, 100 mg/
kg, in drinking water, for 5 consecutive weeks
and injection of doxorubicin on the 7th day of
experiment, P major 600 group, rats was received
P major extract, 600 mg/kg, in drinking water, for
3 consecutive weeks, and injection of doxorubicin
on the 7th day of experiment; and P major 1200
group, rats received P major extract, 1200 mg/
kg, in drinking water, for 5 consecutive weeks,
and injection of doxorubicin on the 7th day of
experiment.

Sample Collection and Measured Parameters

Urine samples using individual metabolic
cages and blood samples from the orbital sinus
were collected on the 1st day and 1, 2, 3, and 4
weeks (days 14, 21, 28, and 35) after doxorubicin
injection. Blood samples were centrifuged at 3000
g for 15 minutes, and serum was stored at -20°C
until use. Four weeks after doxorubicin injection,
the rats were anaesthetized with ether and the
right kidneys were quickly removed. Then, all
animals were humanely killed. Serum and urine
concentrations of urea and creatinine and urine
concentration were measured using Convergys
100 Biochemistry Analyser using commercial kits
(Pars Azmoon, Iran). Creatinine clearance for
estimation of glomerular filtration rate (GFR) as
well as urea clearance were calculated using the
following formula:

\[
\text{Creatinine clearance (mL/min) = urine} \\
\times \text{creatinine (mg/dL) × urine output (mL/min)/}
\]

\[
\text{plasma creatinine (mg/dL)}
\]
Histopathological Examination

The right kidneys were fixed in 10% formalin, then dehydrated in graded alcohols and embedded in paraffin. Sections of 5 μm were prepared and staining was carried out with hematoxylin-eosin. The renal sections were examined in a light microscopy for glomerular and tubulointerstitial injury.

Statistical Analysis

All data were expressed as mean ± standard error of mean. Between-group comparison was estimated using the 1-way analysis of variance, followed by the LSD post hoc test. Intragroup comparisons were analyzed using repeated measures. Differences were considered significant when the P value was less than .05.

RESULTS

Kidney Function

In the control group, there was no significant change in GFR, urea clearance, and urine glucose concentration between different days of the study. However, compared to day 1, GFR showed a significant reduction on days 28 and 35 in the doxorubicin group ($P < .01$ and $P < .05$, respectively) and urea clearance showed a significant decrease on days 21 and 28 ($P < .01$ and $P < .05$, respectively; Figures 1 and 2). Compared to day 1, urine concentration of glucose significantly increased on days 21, 28, and 35 in the doxorubicin group (Figure 3).

In the dexamethasone-doxorubicin group, GFR significantly decreased on the days 28 and 35 compared with day 1 ($P < .01$; Figure 1). In this group, urea clearance showed a significant reduction on day 35 compared to day 1 ($P < .05$; Figure 2). However, urine glucose concentration demonstrated no significant alteration between different days of the experiment (Figure 3). In the vitamin E-doxorubicin group, urea clearance showed a significant increase on the day 14 and a significant decrease on day 35 of the study compared with day 1 ($P < .05$; Figure 2). Nevertheless, no significant difference was seen in GFR and urine level of glucose between different days of the study (Figure 1 and 3). Treatment of the doxorubicin-injected rats with P major extract (600 mg/kg)
significantly decreased the GFR on day 35 compared to day 1 ($P < .05$), but the urea clearance and urine glucose level showed no significant change between different days of the experiment (Figures 1 to 3).

Figure 2. Urea clearance in the experimental groups. Values are the mean ± standard error of mean.
* $P < .05$ compared with day 1
† $P < .01$ compared with day 1

Figure 3. Urine glucose concentration in the experimental groups. Values are the mean ± standard error of mean.
* $P < .05$ compared with day 1
However, there was no significant change in GFR, urea clearance, and urine glucose concentration between different days in the *P major* 1200 group (Figures 1 to 3).

Kidney Injury

Histopathological assessment of renal tissue sections from the doxorubicin-treated animals showed glomerular and tubular degeneration, intratubular cast formation, and inflammatory cell infiltration (Figure 4). In contrast, treatment of the doxorubicin-injected rats with *P major* extract, dexamethasone, and vitamin E improved renal histopathological changes (Figure 4). The percent of kidney damage in the doxorubicin-treated animals was significantly higher than those of the control group (*P* < .001; Figure 5). Treatment of the rats with *P major* extract, dexamethasone, and vitamin E significantly lowered the percent of kidney damage compared with the doxorubicin group (*P* < .001; Figure 5).

DISCUSSION

Nutritional intervention research has demonstrated that different *Plantago* species show biological activities and exert protection in different disease models. We previously reported the beneficial effects of *P major* extract in attenuating the nephrotoxicity associated with cisplatin. In the present study, the protective effect of *P major*...
Plantago major and Nephropathy—Naji et al

extract against nephropathy induced by doxorubicin was evaluated. The current results indicated that *P* major extract improved doxorubicin-induced renal injury, as assessed by functional and histological parameters. Doxorubicin is an effective anticancer drug that the induction of nephrotic syndrome and other organ toxicities limits its clinical application. Nephrotic syndrome is an important clinical condition that its underlying mechanisms are not fully understood and the treatment is often ineffective. Most remedies are aimed to resolve the nephrotic syndrome-associated secondary symptoms including edema, hyperlipidemia, and venous complications, and thus, not efficacious to prevent progression toward kidney failure. The proteinuria created by nephrotic syndrome is due to the damage to glomerular barrier components.

Doxorubicin induces nephropathy is a valuable experimental model for finding out the processes involved in the progression of proteinuric kidney disease. Doxorubicin induces renal injury by direct toxic effect on the glomerular basement membrane, podocytes, glomerular endothelial cells, and subsequent tubulo-interstitial inflammation and fibrosis. Kidney function is also affected so that increased serum urea and creatinine concentrations, decreased urea and creatinine clearance, reduced serum albumin, massive proteinuria, and dyslipidemia can be seen following doxorubicin administration. Several dosages have been reported for doxorubicin administration. In the present study, the nephropathy was created by a single-dose injection of doxorubicin. Results from the current study, in line with previous studies, revealed significant decreases in GFR and urea clearance and an increase in urine glucose levels after treatment with doxorubicin.

Histopathological examination showed that following doxorubicin administration, there were severe glomerular, interstitial, and tubular lesions including cast formation, interstitial infiltration, hemorrhage, dilated glomerular space, and glomerular atrophy. Similar results were also observed by other investigators. In this study, treatment of doxorubicin-injected rats with *P* major extract for 1 week before and 4 consecutive weeks after a single-dose injection of doxorubicin showed a considerable improvement in these functional parameters. Also, *P* major extract at 600 mg/kg and 1200 mg/kg could significantly decrease the renal morphological changes induced by doxorubicin. Interestingly, these effects of *P* major extract were similar and even more than those of vitamin E and dexamethasone.

The exact mechanisms underlying the improvement of nephropathy by *P* major extract are not fully elucidated. Nevertheless, it has been determined that *P* major is a source of bioactive compounds including flavonoids, glycosides, and polyphenolic compounds with potential antioxidant and anti-inflammatory effects. Different studies have reported that free radical generation, lipid peroxidation, and antioxidant enzymes inhibition are the main mechanisms for the pathogenic effects of doxorubicin. Previous investigations have reported that *P* major protects the activity of superoxide dismutase and catalase antioxidant enzymes and decreases the lipid peroxidation in different tissues.

Inflammation also involves in the pathogenesis of doxorubicin-induced nephropathy. It has been shown that doxorubicin administration increases the activity of nuclear factor-κB and subsequently activates the inflammatory reactions in the kidney. Also, Cheng and colleagues showed that doxorubicin markedly increased cyclooxygenase-2 expression in podocytes from transgenic mice compared with the wild-type mice. Previous investigations have
claimed that 3 substances from *P major* including α-linolenic acid, ursolic acid, and oleanolic acid are selective inhibitors of cyclooxygenase-2.30,31 Furthermore, *P major* leaves extract showed anti-inflammatory activity by inhibition of nuclear factor-κB in oral epithelial cell cultures.32 On the same basis, the protective effect of *P major* extract maybe due to its antioxidant and anti-inflammatory properties.

CONCLUSIONS

Plantago major extract markedly improved the doxorubicin-induced nephropathy. The underlying mechanism may be attributed to its antioxidant and anti-inflammatory activity. Further studies are necessary to clarify the exact mechanisms of beneficial actions of *P major* in nephropathy associated with doxorubicin.

ACKNOWLEDGMENTS

This study was part of a Master’s of Science thesis and was financially supported by the Research Council of Mashhad University of Medical Sciences, Mashhad, Iran.

CONFLICT OF INTEREST

None declared.

REFERENCES

