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Causal Link Between Oxidative Stress, Inflammation, and 
Hypertension

Nosratola D Vaziri

Hypertension (HTN) is a major cause of stroke, left ventricular 
hypertrophy, congestive heart failure, arteriosclerosis, end-stage 
renal disease, and peripheral vascular disease.  Oxidative stress 
and its constant companion, inflammation, play a critical part in the 
pathogenesis of many acute and chronic illnesses including HTN 
and its long-term complications.  There is compelling evidence that 
oxidative stress, inflammation, and HTN are involved in a self-
perpetuating vicious cycle which, if not interrupted, culminates 
in progressive target organ injury and dysfunction. This article is 
intended to review the available evidence for the role of oxidative 
stress and inflammation in the pathogenesis of HTN.  In addition, 
evidence will be presented to demonstrate the role of HTN in the 
pathogenesis of oxidative stress and inflammation.  Finally, evidence 
for participation of tissue angiotensin system in the vicious cycle 
of oxidative stress, inflammation, and HTN will be presented, and 
the approach to treatment of HTN-associated oxidative stress will 
be discussed.
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INTRODUCTION
In recent years,  compelling evidence has 

emerged pointing to the causal interconnection 
between oxidative stress, inflammation, and high 
arterial pressure in different forms of hereditary 
and acquired hypertension (HTN). This assertion 
is based on the following observations: first, 
oxidative stress is associated with elevated 
arterial pressure in nearly all animal models of 
HTN. Second, amelioration of oxidative stress 
reduces blood pressure in hypertensive animals. 
Third, induction of oxidative stress causes HTN 
in genetically normal, otherwise intact animals. 
Moreover, blockade of production of reactive 
oxygen species (ROS) attenuates pressor response 
to angiotensin II infusion. Fourth, oxidative stress 
and hypertension are accompanied by renal 
tubulointerstitial infiltration of T lymphocytes 
and macrophages. Finally, interventions aimed at 
preventing or reversing inflammation ameliorate 

oxidative stress and lower arterial pressure in 
hypertensive animals. This article is intended to 
provide a brief review of the nature, the mechanism, 
and the potential approach to management of 
oxidative stress in HTN.

FORMATION AND METABOLISM OF 
REACTIVE OXYGEN SPECIES

Under normal conditions, significant amounts 
of ROS such as superoxide (O2

• ¯) and hydrogen 
peroxide (H2O2) are produced in the course of 
oxygen metabolism. The primary sources of ROS 
include mitochondrial electron transport system and 
various oxidase enzymes including nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase, 
xanthine oxidase, cycloxygenase, lipoxygenase, 
P450 enzymes, glucose oxidase, and uncoupled 
nitric oxide synthases among others (Figure 1).  The 
primary ROS produced in the body is superoxide 
which is generated from the 1-electron reduction 
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of molecular oxygen:
O2 + e¯ → O2

• ¯ 
Superoxide is a short-lived, highly reactive, 

and potentially cytotoxic molecule which can 
attack, denature, or modify adjacent molecules. 
For instance, superoxide avidly reacts with and 
inactivates nitric oxide (NO), an event which leads 
to formation of peroxynitrite and reduction of 
bio-available NO:

O2
• ¯ + NO → ONOO¯ 

Peroxynitrite is an extremely reactive nitrogen 
species, which attacks, denature, and damages 
lipids, proteins, and nucleic acids. For instance, 
peroxynitrite reacts with tyrosine residues in 
protein molecules to produce nitrotyrosine. This 
phenomenon can alter function and structure 
of proteins and interfere with cellular signal 
transduction pathways involving tyrosine 
phosphorylation.

Tyrosine + ONOO¯     Nitrotyrosine  

Normally, superoxide is converted to H2O2 by a 
family of enzymes known as superoxide dismutase 
(SOD). Three different SOD isoforms have been, 
thus far, identified: cytoplasmic isoform (cuprozinc-
containing SOD); mitochondrial isoform (manganese 
SOD), and extracellular SOD.  

O2
• ¯ + O2

• ¯ + 2H  SOD   H2O + O2 
H2O2 is normally converted to water by either 

catalase (CAT) or glutathione peroxidase (GPX). 
Glutathione peroxidase uses reduced glutathione 
(GSH) as its substrate: 

2H2O2  
CAT   H2O + O2

H2O2  + 2GSH  GPX   2H2O + GS–SG (Oxidized 

Glutathione)
However, in the presence of electron donors 

such as iron (Fe2+) and other transition metals (eg, 
Cu2+) or superoxide (O2

• ¯ ), H2O2 is converted to 
hydroxyl radical (.OH), which is the most reactive 
cytotoxic radical known. Hydroxyl radical attacks 
and denatures the adjacent molecules such as 
lipids, proteins, carbohydrates, and nucleic acids 
(eg, DNA).

H2O2 + Fe2+      .OH + OH¯ + Fe3+   (Fenton 
Reaction) 

H2O2  + O2
• ¯      .OH + OH¯   + O2     (Haber 

Wiess Reaction) 
In addition, in the presence of inflammation, 

phagocytes  produce  and  conver t  H 2O 2 to 
hypochlorous acid via the enzyme, myeloperoxidase 
(MPO), which is highly abundant in these cells.

H2O2 + Cl¯ + H   MPO   HOCl + H2O
Hypochlorous acid is a highly reactive chlorine 

species which can oxidize a variety of molecules, 
including proteins, to cause tissue injury and 
dysfunction. For instance, byproducts of MPO 
reactions are abundantly present in atherosclerosis 
plaques.

ANTIOXIDANT DEFENSE SYSTEM
Under normal conditions, ROS and the byproducts 

of their reactions with various biomolecules are 
neutralized and converted to harmless molecules 
by the natural antioxidant system. The antioxidant 
defense system is a highly complex biochemical 
organization that consists of numerous enzymes 
and a large number of scavenger molecules. Each 

Figure 1. Production and metabolism of reactive oxygen species. NADPH indicates nicotinamide adenine dinucleotide phosphate; NOS, 
nitric oxide sythase; GSSG, glutathione disulfide; CAT, catalase; SOD, superoxide dismutase; GPX, glutathione peroxidase; and MPO, 
myeloperoxidase.
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of these enzymes and antioxidant molecules 
participate in highly specific reactions and, as 
such, are not interchangeable. The body’s pool of 
antioxidant molecules is derived from endogenous 
and exogenous sources. The exogenous antioxidants 
include molecules such as various vitamins and 
phytochemicals as well as byproducts of normal 
colonic microbial organisms.  

Interaction of antioxidant molecules with ROS 
and other reactive species protects the functional 
and structural moles from oxidative damage. 
In this context, antioxidant molecules act as 
soldiers who protect civilian populations against 
invading enemies. It is of note that antioxidant 
molecules interacting with ROS become free 
radicals themselves and have to be neutralized by 
other specific enzymes or antioxidant molecules.  
Consequently, consumption of very high levels 
of any antioxidant can paradoxically initiate or 
exacerbate oxidative stress due to accumulation of its 
free radical metabolite.  In fact, increasing number 
of cancer and cardiovascular disease prevention 
trials have demonstrated heightened rather than 
decreased risk with oversupplementation of 
various antioxidants. These observations highlight 
the importance of a well-balanced antioxidant 
system for maintenance of health and disease 
prevention.

OXIDATIVE STRESS
Oxidative stress is a consequence of the imbalance 

between ROS production and antioxidant capacity. 
This can occur as a result of either heightened 
ROS generation, impaired antioxidant system, 
or a combination of both. In the presence of 
oxidative stress, uncontained ROS attack, modify, 
and denature functional and structural molecules 
leading to tissue injury and dysfunction. I wish to 
point out that while excessive production of ROS 
causes injury and dysfunction, normal rate of ROS 
production is essential for life. This is because 
ROS serve many biologically important roles in 
signal transduction, regulation of cell growth and 
apoptosis, fetal development, and innate immunity, 
among other functions.

Evidence for Causal Role of Oxidative Stress in 
Hypertension

Increasing evidence has emerged that point to 
a causal link between oxidative stress, HTN, and 

inflammation.1,2 This proposition is based on the 
following observations:

First, a consistent association has been found 
between HTN and oxidative stress in the kidney, 
blood vessels, and brain in nearly all forms of 
acquired and hereditary HTN in experimental 
animals. For instance, oxidative stress has been 
shown to be present in animals with HTN caused 
by chronic lead exposure, chronic kidney disease, 
deoxycorticosterone acetate-salt administration, 
aorta coarctation, diabetes mellitus, metabolic 
syndrome, nitric oxide synthase (NOS) inhibition, 
high salt intake, and angiotensin II.3-34 

Second, alleviation of oxidative stress with 
pharmacological doses of several antioxidants 
has been shown to reduce blood pressure in 
hypertensive animals, but not in the normotensive 
animals.3,4,6-11,15-24

And third, the observations cited above represent 
indirect evidence for the role of oxidative stress 
in the pathogenesis of HTN. Direct evidence for 
the causal role of oxidative stress comes from the 
following observations:  (a) induction of oxidative 
stress has been shown to cause HTN in genetically 
normal, otherwise intact, animals35,36; (b) mice with 
manganese SOD deficiency exhibit salt-sensitive 
HTN37; and  (c) binding of angiotensin II to the 
angiotensin I (AT1) receptor results in production of 
ROS via activation of NADPH oxidase in the kidney 
and vasculature. Activation of NADPH oxidase 
involves assembly of the enzyme’s cytoplasmic 
(P47phox and P67phox) and membrane-associated 
(p22phox and gp91phox or its tissue-specific isoforms, 
NOX-1, NOX-4, etc) subunits. The ROS production 
and hypertensive response to angiotensin II infusion 
is attenuated by pharmacological inhibition of 
NADPH oxidase and by suppression of its p22phox 
subunit expression.38,39 These observations illustrate 
the role of ROS as a major mediator of the pressor 
action of angiotensin II. 

Evidence for the Role of Hypertension as a 
Cause of Oxidative Stress

T h e  o b s e r v a t i o n s  c i t e d  a b o v e  p r o v i d e 
irrefutable evidence that oxidative stress in the 
kidney, blood vessels, and brain causes HTN. 
Conversely, HTN, per se, has been shown to 
cause oxidative stress. This assertion is based 
on investigations that revealed presence of 
oxidative stress in the vascular tree residing 



Oxidative Stress, Inflammation, and Hypertension—Vaziri

� Iranian Journal of Kidney Diseases | Volume 2 | Number 1 | January 2008

proximal to (hypertensive zone), but not distal 
to the abdominal aorta coarctation in rats with 
abdominal aorta banding.40-42 Since both of the 
arterial segments are supplied by the same blood 
in this model, these experiments clearly illustrate 
the role of high blood pressure and shear stress 
as opposed to those of circulating hormones and 
other humoral factors as a cause of oxidative stress. 
Taken together, these observations suggest that 
oxidative stress can cause HTN, and HTN can 
cause oxidative stress; hence, the two conditions 
are involved in a self-perpetuating cycle.

Cellular and Molecular Sources of Oxidative 
Stress in Hypertension

Oxidative stress is a condition in which generation 
of reactive oxygen species (ROS) exceeds the 
capacity of the antioxidant defense system. Thus, 
oxidative stress can occur as a consequence of 
excess generation of ROS, depressed antioxidant 
capacity, or a combination thereof.

The NADPH oxidase family of enzymes has been 
identified as the main source of ROS in the kidney 
and vascular tissues in various models of HTN.43 
This enzyme was originally found in phagocytes 
serving as a source of ROS to destroy invading 
microbes.  More recently, NADPH oxidase and 
its closely related isotypes have been found in 
numerous other cell types including endothelial 
cells, renal tubular epithelial cells, and vascular 
smooth muscle cells (NOX-1 and NOX-4).  Shear 
stress, angiotensin II,  and proinflammatory 
cytokines which are intimately related to HTN 
can activate and/or upregulate NADPH oxidases. 
In fact, upregulation of NADPH oxidase and its 
isotypes has been demonstrated in various models 
of HTN.12,19,25,32

Insufficient Antioxidant System
Although excessive production of ROS is the 

most common cause of oxidative stress in HTN, 
it is occasionally caused by primary impairment 
of antioxidant system. For instance, hereditary 
mitochondrial  SOD deficiency causes salt-
sensitive HTN in mice,37 and glutathione depletion 
can raise blood pressure in rats.35,36 Moreover, 
persistent oxidative stress can deplete antioxidant 
molecules and inactivate antioxidant enzymes 
and, thereby, impair antioxidant defense system. 
In fact, several recent studies have demonstrated 

significant impairment of antioxidant enzymes in 
various models of HTN including spontaneously 
hypertensive rats and rats with chronic kidney 
failure, lead-induced HTN, diabetes, and salt-
sensitive Dahl rats.6,12,16,32

Immune Cell Activation in Hypertension
Several studies have demonstrated renal 

tubulointerst i t ia l  inf i l t rat ion of  act ivated 
macrophages and T lymphocytes in various animal 
models of HTN.23,24,32,44-48 These findings point to 
the association of HTN with inflammation. The 
infiltrating immune cells, as well as cells of renal 
origin, have been shown to produce superoxide 
and express angiotensin II,  events that can 
contribute to oxidative stress and HTN.23,24 This 
assumption is supported by the observations that 
interventions aimed at reducing the inflammatory 
infiltrate result in amelioration of HTN.45-48 It is 
of note that the activated immune cells release 
large quantities of ROS which promotes regional 
oxidative stress.  Conversely, oxidative stress 
promotes inflammation by activating the redox-
sensitive transcription factor, nuclear factor-
kappa B (NF-kappa B) which, in turn, triggers 
generation of proinflammatory cytokines and 
chemokines, and hence, inflammation (Figure 2).  

Figure 2. Effects of oxidative stress on nitric oxide metabolism 
and action. NO indicates nitric oxide; BH4, tetrahydrobiopterin; 
DDAH, dimethyl arginine dimethyl aminohydrolase; NOS, 
nitric oxide sythase; ED, endothelial dysfunction; and CVD, 
cardiovascular disease.
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This supposition is supported by recent studies 
that clearly demonstrated concurrent NF-kappa 
B activation and tubulointerstitial inflammation 
and their amelioration with antioxidant therapy 
in hypertensive animals.23,24

Taken together, these studies have identified 
renal parenchymal cells, resident macrophages, 
and infiltrating inflammatory cells as the source 
of ROS in the kidney of hypertensive animals. In 
addition, generation of ROS by endothelial cells, 
vascular smooth muscle cells, and circulating 
leukocytes contribute to oxidative stress in the 
vascular tissue.

Mechanisms by Which Oxidative Stress 
Increases Blood Pressure

Oxidative stress can raise blood pressure by 
several mechanisms:

(1) Oxidative stress limits bioavailability of NO in 
key tissues and organs involved in blood pressure 
regulation by several mechanisms (Figure 3):  
first, ROS avidly react with and inactivate NO. 
Second, ROS reduce NO production by uncoupling 
endothelial NO sythase (eNOS), by depleting 
tetrahydrobiopterin, which is the NOS cofactor, 
and by promoting accumulation of asymmetrical 
dimethyl-arginine (ADMA), which is a potent 
endogenous NOS inhibitor. The latter is caused 
by ROS-mediated inhibition of dimethylarginin 
dimethyl-aminohydrolase (the enzyme that 
metabolizes ADMA) and by upregulating the 

enzyme, protein methyl-transferase-1 which 
catalyzes arginine methylation, and hence, 
generation of ADMA.49,50 The reduction of NO 
availability by oxidative stress in the vascular 
tissue can raise systemic vascular resistance, 
and hence, blood pressure by lowering the NO-
mediated vasodilatory tone. In addition, limitation 
of NO availability in the kidney can augment 
renal vascular resistance, increase tubular sodium 
and water reabsorption, and inhibit pressure 
natriuresis, events that can raise blood pressure 
via extracellular volume expansion.  Moreover, 
diminished NO in the brain can increase central 
sympathetic outflow which can contribute to the 
rise in blood pressure.51 Finally, oxidative stress can 
directly and indirectly (via lowering NO) promote 
endothelial dysfunction, vascular remodeling 
(matrix protein accumulation; vascular smooth 
muscle; and fibroblast migration, transformation, 
and proliferation), and leukocyte/platelet adhesion, 
events that lead to maintenance of HTN and 
progressive arteriosclerosis, atherosclerosis, and 
thrombosis.

(2) The ROS result in nonenzymatic oxidation of 
arachidonic acid in lipoproteins and cell membrane 
phospholipids, which leads to generation of 
vasoconstrictive proinflammatory products such as 
isoprostanes. These byproducts of arachidonic acid 
oxidation can contribute to the rise in blood pressure 
and renal and cardiovascular complications.18

(3) The ROS can increase vascular smooth muscle 
tone by increasing cytoplasmic ionized calcium 
concentration ([Ca2+]i).

52

(4) Oxidative stress can promote endothelial injury 
and dysfunction which can support development 
of HTN and cardiovascular disease.

ROLE OF INFLAMMATION IN 
PATHOGENESIS OF HYPERTENSION

Figures 3  and 4 show the l inks between 
oxidative stress, inflammation, and HTN. There 
is increasing evidence supporting the role of 
renal tubulointerstitial and vascular inflammation 
in the pathogenesis of HTN.1,53  In fact, renal 
tubulointerstitial infiltration of T lymphocytes 
and macrophages has been shown in essentially 
all animal models of hereditary and acquired 
HTN. Renal tubulointerstitial inflammation is 
accompanied by activation of NF-kappa B,32,44,54 
which is the general transcriptional factor for 

Figure 3. Interconnection of hypertension, oxidative stress, 
inflammation, and atherosclerosis. AA indicates arachidonic 
acid; CV, cardiovascular; ROS, reactive oxygen species; 
NFKB, nuclear factor-kappa B; NADPH, nicotinamide adenine 
dinucleotide phosphate; and NO, nitric oxide.
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many proinflammatory cytokines, chemokines, 
and adhesion molecules.

In addition, several studies have demonstrated 
activation of circulating leukocytes in hypertensive 
humans and animals.55-62  The causal role of 
inflammation in the pathogenesis of HTN is 
supported by a number of animal studies that have 
shown amelioration of HTN with interventions 
aimed at blocking inflammation including the 
use of NF-kappa B activation inhibitor,63,64 and 
the immunosuppressive drug, mycophenolate 
mofetil.48,51,65 

It is of note that inflammation and oxidative 
stress are inseparably interconnected (Figure 4).  
For instance, by activating NF-kappa B and 
activator protein-1, oxidative stress stimulates 
production of chemokines, cytokines, and adhesion 
molecules as well as activation and proliferation 
of lymphocytes. These events, in turn, result in 
immune cell activation, adhesion, and infiltration. 
Conversely, inflammation causes oxidative stress 
since production of the ROS is an inherent property 
of activated immune cells. Thus, oxidative stress and 
inflammation are involved in a self-perpetuating 
cycle. In fact, circulating blood leukocytes and 
immune cells infiltrating the kidney have been 
shown to produce ROS in hypertensive animals 
and humans.24,59-62

PARTICIPATION OF TISSUE ANGIOTENSIN 
SYSTEM

Activation of AT1 receptor by angiotensin II 
results in activation and upregulation of NADPH 

oxidase isoforms, and thereby, generation of ROS in 
the kidney and cardiovascular tissues.66-68 The ROS 
produced in this manner promotes inflammation by 
activating NF-kappa B.69,70 Angiotensin II has been 
shown to promote NF-kappa B activation in renal 
and vascular cells which leads to inflammation in 
these tissues.71 Conversely, activation of NF-kappa 
B stimulates gene expression of angiotensinogen.72 
Accordingly, activations of tissue angiotensin 
system and NF-kappa B appear to be involved in a 
vicious cycle that contributes to HTN, renal injury, 
and inflammation. Thus, in addition to stimulating 
salt retention (directly in proximal tubules and 
indirectly via aldosterone in distal tubules) and 
vasoconstriction, angiotensin II promotes oxidative 
stress and inflammation. Conversely, inflammation 
raises renal tissue angiotensin system (Figure 5). 
This assertion is based on the observation that 
inflammatory cells constitute close to 50% of 
angiotensin II-expressing cells in hypertensive 
kidney.53 

Several animal studies have shown marked 
upregulation of AT1 receptor and significant 
increase in the number of angiotensin II positive 

Figure 4. Link between oxidative stress and inflammation. 
LDL indicates low-density lipoprotein; PL, phospholipids; ROS, 
reactive oxygen species; NFKB, nuclear factor-kappa B; and 
AGE, advanced glycol-oxidation end products.

Figure 5. Role of angiotensin system in the pathogenesis of 
oxidative stress and inflammation. AT indicates angiotensin; 
ROS, reactive oxygen species; NFKB, nuclear factor-kappa B; 
NADPH, nicotinamide adenine dinucleotide phosphate; and 
NOS, nitric oxide synthase.
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cells in the kidneys of hypertensive animals. Thus, 
tissue angiotensin system appears to be upregulated 
in many hypertensive disorders regardless of 
plasma renin levels.32,44,73-76 These observations 
illustrate the interconnection of tissue angiotensin 
system with oxidative stress, inflammation, and 
hypertension and provide the rationale for renin-
angiotensin system blockade in the management 
of hypertension.

TREATMENT OF OXIDATIVE STRESS IN 
HYPERTENSION

Successful management of oxidative stress in a 
given condition requires in-depth understanding 
of its cellular and biochemical mechanisms. 
Consequently, a mere administration of one or more 
antioxidant vitamins cannot cure oxidative stress in 
HTN, renal disease, diabetes, or other conditions.  
Instead, specific interventions directed at the 
specific underlying factor would be most effective. 
For instance, since HTN can cause oxidative stress, 
therapeutic interventions that can reduce blood 
pressure represent an ideal antioxidant therapy for 
the HTN-associated oxidative stress. In addition, 
since stimulation of AT1 receptors by angiotensin 
II promotes oxidative stress and HTN via activation 
and upregulation of NADPH oxidases, drugs 
that interrupt rennin-angiotensin system can be 
considered as specific therapies for management of 
oxidative stress in certain types of HTN, especially 
chronic kidney disease and diabetes mellitus. 
Similarly, adequate glycemia control in diabetes 
and lipid-lowering strategies in hyperlipidemia are 
most effective in reversing oxidative stress associated 
with these conditions.  Finally, consumption of a 
diet rich in natural antioxidants and other essential 
micronutrients (present in fresh fruits, vegetables, 
and nuts), as well as regular exercise and weight 
control, would be desirable in combating oxidative 
stress and promoting good health.13,77 

Not surprisingly, cardiovascular and cancer 
prevent ion tr ia ls  of  high doses  of  several 
antioxidant compounds including tocopherol, 
beta carotene, ascorbic acid, selenium, and other 
agents have shown no benefit or increased instead 
of decreased risk.78-83 As noted in a recent review,1 
and summarized in the Table, several factors 
contribute to the lack of benefit and potential 
adverse effects of high doses of antioxidant 
agents. First, since oxidative stress in HTN is not 
caused by deficiency of the given antioxidants, 
it cannot be corrected by administration of such 
agents. Second, administration of supraphysiologic 
quantities of the given antioxidant compounds 
would lead to accumulation of their free radical 
metabolite (for example, ascorbyl radical with 
vitamin C, tocopheroxyl radical with vitamin E, 
etc) which can actually worsen oxidative stress. 
For these and other reasons listed in the Table, 
consumption of high doses of these agents is 
not recommended for the treatment of HTN and 
cardiovascular disease.   
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