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Genetics and Epigenetics of Chronic Allograft Dysfunction in 
Kidney Transplants 

Sepideh Zununi Vahed,1,2,3 Nasser Samadi,1 Elmira Mostafidi,4,5 
Mohammadreza Ardalan,5 Yadollah Omidi2

Chronic allograft dysfunction is the most common cause of allograft 
lost. Chronic allograft dysfunction happens as a result of complex 
interactions at the molecular and cellular levels. Genetic and 
environmental factors both influence the evolution and progression 
of the chronic allograft dysfunction. Epigenetic modification could 
be considered as a therapeutically modifiable element to pause 
the fibrosis process through novel strategies. In this review, the 
PubMed database was searched for English-language articles on 
these new areas.
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INTRODUCTION
Chronic allograft dysfunction (CAD), also 

called chronic allograft nephropathy, is the most 
common cause of allograft loss, and the picture 
has not changed despite of recent advances in 
immunosuppression therapy.1,2 Chronic allograft 
dysfunction is a multifactorial process and happens 
as a result of complex interactions at various 
molecular and cellular levels. Both genetic and 
environmental factors influence the progression 
of the condition. 

Chronic allograft dysfunction is characterized 
by progressive kidney dysfunction, hypertension 
and proteinuria, and pathologically it is a state 
of interstitial fibrosis/tubular atrophy with 
glomerulosclerosis,3-5 and a cumulative damage 
to the allograft happens because of immunologic 
and nonimmunologic factors (Table).6-39 

Donor-related factors include age, sex, ethnicity, 
and donor source. Acute tubular necrosis at the 

time of donation, nephron mass, and human 
leukocyte antigen antibody mismatch with the 
recipient are all involved in the graft outcome. 
On the recipient side, these factors are preexisting 
disease (eg, hypertension, diabetes mellitus, and 
hyperlipidemia), cold ischemia-reperfusion injury, 
mechanical injuries during transplantation, positive 
panel reactive antibodies, acute rejection, timing 
of the first acute rejection, subclinical rejection, 
delayed graft function (DGF), body mass index, 
diet, smoking, intestinal microorganisms, and drug 
nephrotoxicity (Figure 1).1,2,38-46 In addition to the 
donor-recipient genetic interactions, epigenetics 
factors also play an important role; for instance, 
epigenetic modifications within the allograft 
induced by environmental stimuli or drugs may 
affect the allograft survival.47,48 

REVIEW STRATEGY
For this review, we searched the MEDLINE via 
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Factors Description Reference
Age Old donor and young recipient age affect graft outcome. Higher donor age is associated with increased 

risk of CAD, atherosclerosis, glomerulosclerosis, interstitial fibrosis/tubular atrophy, decreased long-
term graft function and increased cardiovascular events; thereby, decreases patient survival.

7-10

Sex Male sex is an independent prognostic factor for poor kidney transplant survival in addition to acute 
rejection and delayed function. Better long-term prognosis in women may be mediated by protection 
afforded by hormones and complex immunological processes. Renal hemodynamics, immune 
responses and susceptibility to reperfusion injury is also different according to donor sex.

11-13

Donor source In deceased organ transplantation, increased inflammation (in donor brain death) and also prolonged 
ischemia times, that increase the occurrence of DGF, contribute to decreased function of graft 
compared to living donors.

14

Donor-specific 
antihuman leukocyte 
antigen antibodies

Donor-specific antihuman leukocyte antigen antibodies are largely responsible for the chronic 
deterioration of allografts.

15

Ethnicity Due to differences in immunologic responsiveness, acute rejection episodes happen more common in 
black than in white recipients. 

16

Klotho Klotho, an anti-aging protein, hinders profibrotic effects of TGF-β1 and Wnt/β-catenin and ameliorates 
renal fibrosis. Therefore, loss of Klotho contributes to kidney injury and fibrosis.

17-19

Cytokines
IFN-γ
IL-1
IL-6
TNF-α
TGF-β

 Interferon-γ has antifibrogenic effects due to its inhibitory effects on myofibroblasts and on collagen 
gene expression. Tumor necrosis factor-α is known to be mitogenic and chemotactic for fibroblasts, 
but it also has effects that could be antifibrotic such as enhancing collagenase activity and inhibiting 
collagen gene expression.

20

Growth factors Increased excretion of CTGF is associated with interstitial fibrosis/tubular atrophy in the graft. TGF-β 
and IL-6 are involved in the proper induction of CTGF in allograft fibrosis. PDGF has implicated in 
renal IF due to its ability to transform fibroblasts into myofibroblasts.

bFGF has role in angiogenesis and for its mitogenic effect on several cells including resident kidney 
cells.

EGFR may mediate renal fibrogenesis by promoting transition of renal epithelial cells to a profibrotic 
phenotype, increased production of inflammatory factors, and activation of renal interstitial 
fibroblasts. Inhibition of EGFR may have therapeutic potential for fibrotic kidney disease.

20, 21

Hormones Estrogens have nephron-protective effects on kidney and the progression of CAD. Likewise, attenuate 
glomerulosclerosis and tubulo-interstitial fibrosis. Estrogens play an important part in disturbances of 
the phosphorus-calcium metabolism beside other factors like parathormone, vitamin D and FGF-23.

Sex hormone action may be mediated via gene-specific epigenetic modifications of DNA and histones.
FGF23 plays a key role in the regulation of calcium phosphate metabolism. Serum calcium, 

phosphorus and PTH levels are risk factors for DGF 
A low pretransplantation serum T3 concentration in patients with uremia may have protective effects 

against reperfusion injury and the hypercatabolic state early after transplantation.
Donor use of dopamine is resulted in less AR episodes, a lower incidence of DGF and improved renal 

function and long-term graft survival.

13, 22-
26

Infection A global state of immunosuppressive therapies makes a significant increased risk for opportunistic 
infections in recipients.

Releasing of cytokines, chemokines, and GFs in response to viral infection, altered expression of 
surface antigens (eg, histocompatibility antigens), increased risk of secondary infection by bacteria, 
fungi and viruses, dysregulated cellular proliferation and allograft fibrosis are some of viral infection 
effects.

27-33

Body mass index Elevated body mass is strongly linked with worse graft survival 34
Proteinuria
Albuminuria
Hypertention
Hyperglucoma
Hyperlipidemia
Hyperuricemia
Anemia

An excessive amount of protein resorption causes inflammatory mediators releasing from tubular cells 
and consequent interstitial injury.

Albuminuria contributes to progressive glomerulosclerosis through inhibition of the differentiation of 
renal progenitor cells into podocytes. 

Hypertension increases expression of growth factors and MHC II in CAD.
Excessive uric acid is associated with insulin resistance, dyslipidemia and with interstitial fibrosis/

tubular atrophy. 

35-37

Diet High protein intake exacerbates glomerular injury.
Microbiome The population of microbes (microbiome) in the intestine have numerous bidirectional interactions with 

the host, influencing immunity, resistance to infection, inflammation and metabolism; therefore, its 
composition may be involved in CAD development.

38, 39

Immunologic and Nonimmunologic Factors Involved in Chronic Allograft Dysfunction*

*TNF-α indicates tumor necrosis factor alpha-α; TGF-β1, transforming growth factor-β1; CTGF, connective tissue growth factor; BMP, bone 
morphogenetic protein; PDGF, platelet-derived growth factor; bFGF, basic fibroblast growth factor; EGFR, epidermal growth factor receptor; HGF, 
hepatocyte growth factor; IGF-1, insulin-like growth factor-1; PTH, parathyroid hormone; FGF, fibroblast growth factor 23; CMV, cytomegalovirus; 
HCV, hepatitis C virus; HBV, hepatitis B virus; HIV, human immunodeficiency virus; HSV, herpes simplex virus; EBV, Epstein-Barr virus; AR, 
acute rejection; DGF, delayed graft function; CAD, chronic allograft dysfunction; and IFTA, interstitial fibrosis and tubular atrophy.
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the PubMed for English-language articles using 
the search terms “interstitial fibrosis/tubular 
atrophy,” “chronic allograft dysfunction,” “chronic 
allograft nephropathy,” alone and in combination 
with “hormones,” “infection,” “donor/recipient-
related risk factors,” “genetics,” “polymorphism,” 
“epigenetics,” “microRNA,” and “microRNA 
polymorphism.’’ We focused on articles published 
in the past 5 years, but did not exclude commonly 
referenced and highly regarded older publications. 
We also searched the reference lists of identified 
articles for further relevant papers, and also we 
included additional papers suggested by the 
authors.

INTERSTITIAL FIBROSIS/TUBULAR ATROPHY 
Interstitial fibrosis/tubular atrophy results from 

the combination of tubular injury and healing 
responses. Interstitial fibrosis/tubular atrophy 
is orchestrated by a complex combination of 
cytokines, chemokines, growth factors, signaling 

pathways, toxins, and stress molecules4,49-54; 
transforming growth factor (TGF)-β1 is a the 
central mediator.50,55 Activation and proliferation of 
fibroblasts/myofibroblasts, epithelial-mesenchymal 
transition, and extracellular matrix accumulation 
all happens in this condition.49,55,56 Suppression 
of matrix metalloproteinases leads to matrix 
accumulation and glomerulosclerosis.49-54,57 This 
process is exacerbated by immunosuppressants. 

GENETICS
Overview

Genetic variants in the donors and recipients 
and their interactions can influence the allograft 
outcome.58-60 Genetic polymorphisms in cytokines, 
chemokines, growth factors, drug transporter, and 
metabolizing enzymes all influence the allograft 
outcome. Immunosuppressive drug metabolism is 
also influenced by genetic factors.60-62 Genotype of 
kidney donor’s nephropathy susceptibility genes 
and recipient’s immune response genes impact 

Risk factors for DGF
Donor/recipient-related age
Weight, Cause of death 
Urine output & Creatinine
Time on dialysis
Type of dialysis
Comorbidities
Duration of surgery
Ca, P

Epigenetic modifications;
micro-RNAs dysregulation

Genetics & Pharmacogenetics

Inflammatory infiltration

Acute rejection

Ischemia-
Reperfusion

Renal quality
Deceased donor
Cause of death (brain death)
Donor age, race
Acute tubular necrosis 
Glomerular/vascular diseases 
Hypertension

Upregulation of GFs, Cytokines,
Adhesion molecules
EMT, Myofibroblast activation

senescence

Preservation/harvesting/
reperfusion, cold & warm ischemia

Poor HLA matching
DGF
Infection (CMV, …)
Allospecific response
Black race

Hormones
RAS
Aldostron
FGF23
PTH

Diseases
Hypertension 
Hyperglicemia
Hyperlipidemia 
Hyperuricemia
Hypomagnesemia

Overweight

Infection 
Obstruction

Diet
Folate depletion 
Smoking

Tubular damage, 
nephron loss, 

CAD/IFTA

CNI Nephrotoxicity

Recipients alloimmunity

HLA mismatch, 
Panel reactive antibodies 
Regraft
young recipient age 
Suboptimal immunosupression

Klotho

Older kidney age
Salt depletion 
Nonsteroidal anti-inflammatory drugs

Microbiome

Figure 1. Chronic allograft dysfunction rises from different genetic, epigenetic, and environmental factors. Allelic variation in cytokines, 
chemokines, growth factors (GF), drug transporter, and metabolizing enzymes genes causes different immune and drug responses 
that are correlated with clinical outcome of kidney allograft. Early allograft damage causes by acute peritransplantation injuries, donor/
recipient-related risk factors, hormones, and episodes of acute rejection. DGF indicates delayed graft function; CMV, cytomegalovirus; 
EMT, epithelial-mesenchymal transition; RAS, renin-angiotensin system; PTH, parathyroid hormone; FGF, fibroblast growth factor 23; 
CAD, chronic allograft dysfunction; and IFTA, interstitial fibrosis and tubular atrophy.
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the allograft.63 Donor polymorphisms in cytokines 
and chemokines influence the recipient’s immune 
response as these genes are expressed in tubular 
epithelial cells.58 

Genetic Variants 
Single nucleotide polymorphisms affect the 

expression and activities of various genes, 
including human leukocyte antigens and related 
allo-immunity.60,62 Cytokine gene polymorphism 
can influence the expression of genes and their 
products,64 and also modify the strength of 
environmental and traditional risk factors. Nikolova 
and colleagues found that high production of TGF-β1 
and tumor necrosis factor-α and low production 
of interleukin-6 in the kidney of recipients might 
be risk factors for development of CAD.65 Genetic 
polymorphisms of TGF-β1, angiotensin II receptor 
type 1, and vascular endothelial growth factor 
are also associated with different susceptibility 
to CAD.66 Tumor necrosis factor-α ,  TGF-β1, 
and interleukin-10 high producer haplotype are 
associated with poorer graft survival and a higher 
risk of acute rejection.67 However, the carriage 
of interleukin-6 high producer Fas low producer 
genotype has a protective effect against kidney 
graft function loss.68

There is an association between recipient’s 
cytokine genotype and acute rejection after 
deceased kidney transplantation.69 However, in 
another study, donor-derived cytokines were 
found to play a major role in allograft outcome.70 
In another study, donor-derived but not recipient-
derived allelic variant of stromal-derived factor-1, 
a ligand for chemokine CXC receptor 4, influenced 
the graft outcome.71 Caveolin-1 is a caveolate-
enriched protein in the cell membrane in the 
vicinity of TGF-β, epidermal growth factor, and 
platelet-derived growth factor receptors that hinder 
TGF-β signaling.72,73 Caveolin-1 risk variants are 
significantly associated with allograft failure and 
influence the risk of kidney allograft infection with 
Polyoma virus nephropathy.63,74 

Allelic variation of the following genes also 
influence the kidney allograft outcome: complement 
component C3, cytotoxic T-lymphocyte antigen, 
endothelial nitric oxide synthase, regulated upon 
activation normal T-cell expressed and secreted, 
platelet glycoprotein III type A, inducible T-cell 
costimulator, monocyte chemoattractant protein-1, 

plasminogen activator inhibitor, vitamin D receptor, 
angiotensin-converting enzyme, and apolipoprotein 
L1.59,62,63 

Complement C4 is a central component of the 
classical and the lectin pathways and has an active 
role in organ rejection,75 and low C4 gene copy 
number is associated with better graft survival in 
some studies, while some other studies found the 
contrary result.75,76 

EPIGENETICS
T h e r e  i s  a  t e n u o u s  l i n k  b e t w e e n  g e n e s 

and epigenetic factors as posttranscriptional 
modifications can regulate the gene translation 
and transcript ion. Epigenetics refers to a heritable 
change in the pattern of gene expression without 
actual changes in DNA sequence.77 Major epigenetic 
mechanisms include DNA methylation, histone 
modifications, and the action of methylation of 
the DNA that occurs in CpG islands (cytosine 
and guanine separated by phosphate) located 
in the first  exons or near the promoters of 
genes that are conserved across species. DNA 
methylation is an important mechanism that 
silences the gene expression through altering the 
chromatin arrangement and blocking the binding 
of transcription factors. Histone proteins play a 
major role in DNA condensation into chromatin, 
and regulation of expression and replication of 
the DNA histone proteins play a major role in 
regulation of expression and replication of the DNA. 
Epigenetic modifications including acetylation, 
phosphorylation, methylation, and ubiquitination 
occur in the histone’s amino acids and affect the 
histones DNA affinity and the accessibility of DNA 
to transcription factors.78 

Epigenetic changes are adjustable in response to 
environmental signals, such as diet, inflammation, 
oxidative stress, metabolic changes, and toxin.57 
For example, folate depletion can lead to loss 
of  methylat ion and genet ic  instabi l i ty79,80; 
hypomethylation, in turn, leads to re-expression 
and re-insertion of viral genes that normally were 
silenced. Viral infections and tobacco exposure are 
known triggers of DNA methylation.81,82 Aberrant 
methylation and demethylation of specific genes 
and histone modifications can lead to hastening the 
course of diabetic nephropathy, aging nephropathy, 
and other causes of chronic kidney disease.30,32,33 
Gene methylation and epigenetic modifications 
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inf luence the act ivation,  prol i ferat ion and 
differentiation of the immune cells, and cytokines 
production that are involved in allograft rejection.64 
Uremia-induced inflammation and metabolic could 
induce the epigenetic changes.83 Uremic toxins 
increase the DNA methyltransferase that silences 
the Klotho gene through its hypermethylation. Loss 
of Klotho function exacerbates the kidney injury 
and fibrosis progression (Figure 2).84,85 

Epigenetic changes during transplantation 
contribute to posttransplant gene dysregulation 
that influences the transplantation outcome.86,87 
Cold ischemia-induced epigenetic  changes 
influence the transplantation outcome.87-89 During 
the reperfusion phase, oxygen and hydroxyl 
radicals release. Reperfusion injury-induced C3 
complement aberrant demethylation also influences 
the allograft survival.44 During the ischemic phase, 
upregulation of hypoxia-inducible factor controls 
the expression of downstream target genes by 
histone demethylation.90 Aberrant hypermethylation 
of the calcitonin gene promoter also happens during 
the acute tubular necrosis and acute rejection. It 
could be a good urine biomarker for early detection 
of acute ischemic injury.91

Hypermethylation of the renin-angiotensin 
system protein activator like-1, which encodes an 
inhibitor of the Ras oncoprotein, is associated with 
prolonged fibroblast activation and fibrogenesis 
in the kidney.92 Transforming growth factor-β1 
and high-glucose concentration can promote 
histone lysine gene methylation in glomerular 
mesangial cells that correlates with extracellular 
matrix accumulation and diabetic nephropathy 
progression.89 Histone’s lysine methylation is a 

metabolic memory and persists even with later 
normal control of glucose. Recently, cytosine 
methylation in enhancer regions of profibrotic genes 
in epithelial cells could influence the downstream 
transcript events.88

It is possible that other immunological molecules 
like major histocompatibility complex molecules, 
intercellular adhesion molecule 1, co-stimulatory 
molecules, cytokines, and transcription factors 
be affected by epigenetic changes during the 
transplantation process.57,87 The methylation pattern 
in the graft may become stable and heritable upon 
cell division. Cells that are involved fibrosis process 
gain a heritable-altered phenotype that promotes 
excessive fibrotic tissue accumulation. Epigenetic 
modifications could activate the fibrotic genes; 
enhance the TGF-β signaling, inflammation, and 
epithelial-mesenchymal transition changes in the 
expression of different microRNAs; and decrease 
the expression of Klotho gene.57,93 The reversible 
nature of the epigenetic changes make it possible to 
pause or even reverse the fibrosis process through 
targeted therapeutic strategies in allografts or other 
fibrotic related kidney diseases.

MICRO-RNA
Micro-RNAs are a class of small endogenous 

noncoding RNAs, and 30% to 80% of human genes 
are predicted to be influenced by micro-RNAs.94 The 
micro-RNA gene is transcribed by RNA polymerase 
II and processed into a primary micro-RNA, which 
is processed in the nucleus to generate primary 
micro-RNA by the microprocessor complex, and 
then primary micro-RNA is transported to the 
cytoplasm by exportin-5 and further processed 

Klotho

Wnt/β-catenin

Senescence
apoptosis

Accumulation
of ECM

EMT

Fibroblast activation,
Myofibroblast activation & 

proliferation

TGF-β

Renal Tubule cells

Renal fibrosis

Figure 2. Klotho acts as an endogenous antifibrotic and anti-aging factor by inhibiting multiple growth factor such as TGF-β1, and Wnt. 
Klotho also inhibits the activation of renal β-catenin, myofibroblast activation, and epithelial-mesenchymal transition (EMT) responses 
and ameliorates renal fibrosis. Loss of Klotho contributes to kidney injury and fibrosis.
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by dicer complex into a mature micro-RNA. 
Single-stranded form of mature micro-RNA is 
incorporated into the RNA-induced silencing 
complex to recognize target mRNA and cause 
cleavage or translational repression of targeted 
mRNAs and gene silencing.

Cellular micro-RNAs are tightly controlled by 
multiple mechanisms, at both the transcriptional 
and posttranscriptional  levels .  The micro-
RNAs transcription is regulated by epigenetic 
modifications through histone methylation, and 
histone de-acetylation micro-RNAs control their 
own expression via an indirect regulation of 
transcriptional activation and or repression.95-97 
The posttranscriptional regulation of micro-RNAs 
can be controlled by factors that influence the 
endonuclease activity.98,99 Some pseudogene mRNAs 
can act as micro-RNA decoy.100,101

Micro-RNAs are critical in the maintenance 
of glomerular homeostasis and their aberrant 
expression is associated with kidney disease. In the 
field of kidney transplantation, the accumulative 
effects of inflammatory cytokines, high blood 
pressure, proteinuria, hypoxia, and hyperglycemia 
result in the alteration of micro-RNAs expression 
profiles. Expression of micro-RNAs (-200s, -29s, 
-30s, -192, and -215) enhances the endothelial-to-
mesenchymal transition. Expression of miR-21, 
miR-23, and let-7b enhances the extracellular matrix 
accumulation, and expression of miR-21, miR-216, 
miR-377, miR-382, miR-200, miR-205, and miR-192 
enhances fibrogenesis.102

MICRO-RNA-RELATED POLYMORPHISM 
Gene polymorphism and copy number variations 

in micro-RNAs are demonstrated in different 
studies.103-105 Despite a target-specific polymorphism 
in micro-RNA, they could affect the expressions of 
multiple genes and lead to serious consequences. 
Micro-RNA gene polymorphisms can be present in 
different stages of micro-RNA processing.106 The 
functional consequences of genetic polymorphisms, 
which reside at both 5′ and 3′ ends of primary or 
mature micro-RNAs, generate a large range of 
sequence variants, called micro-RNA isoforms. 
These polymorphisms and mutations could affect 
epigenetic regulation of micro-RNA genes that could 
affect the regulated cell death, cell proliferation, 
stress resistance, immune responses, and drug 
response.106-108 

CONCLUSIONS
The biocomplexity of CAD and tubulointerstitial 

fibrosis arises from complex orchestration of 
molecular and cellular mediators; genetic and 
epigenetic differences explain the intra- and 
individual variability in susceptibility to CAD/
interstitial fibrosis and tubular atrophy. Genetic and 
epigenetic datasets could be a tool to understand 
and identify the risk factors for such conditions. 
In this context, targeting the epigenetic factors 
could be considered as therapeutic strategies. 
Micro-RNAs have critical regulatory roles in a 
variety of cellular activities and has a significant 
role in pharmacogenetics and pharmacokinetics 
of immunosuppressive drugs. 
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