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Role of Donors and Recipients’ Glutathione S-Transferase 
Gene Polymorphisms in Association of Oxidative Stress 
With Delayed Graft Function in Kidney Allograft Recipients
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Mohamad-Hadi Nematolahi,6 Mohammad-Reza Ebadzadeh,1,2 
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Introduction. Oxidative stress contributes to delayed graft function 
(DGF). Glutathione S-transferases (GSTs) are polymorphic genes 
which produce enzymes with protective effect against oxidative 
stress. This study aimed to investigate the association between 
donors’ and recipients’ GSTM1 and GSTT1 polymorphisms and 
DGF, creatinine clearance, and oxidative stress parameters in 
kidney allograft recipients.
Materials and Methods. One hundred and eighty-two donor-
recipient pairs were studied. Lipid peroxidation and total antioxidant 
capacity were measured in the recipients’ plasma as the parameters 
of oxidative stress. Delayed graft function was determined based 
on at least 10% increase, no change, or less than 10% decrease in 
the serum creatinine level in 3 consecutive days during the 1st 
week after transplantation.
Results. Lipid peroxidation was significantly greater in the 
recipients with DGF (P < .001). The frequency of GSTM1 null was 
significantly higher in the patients with DGF (odds ratio [OR], 0.38; 
95% confidence interval [CI], 0.17 to 0.86; P = .02). There was also a 
significant association between the donors’ GSTM1 polymorphism 
and DGF (OR, 0.31; 95% CI, 0.14 to 0.68; P = .003). A significant 
association was detected between combination of recipients and 
donors’ GSTM1 polymorphism and DGF (OR, 0.20; 95% CI, 0.07 
to 0.64, P = .006). The recipients’ GSTM1 polymorphism, alone 
and in combination with donors’ GSTM1 and GSTT1, significantly 
affected the creatinine clearance on discharge day.
Conclusions. These results suggest that the donors and recipients’ 
GSTM1 polymorphism may be a major risk factor for oxidative 
stress and poor kidney allograft transplantation outcomes.
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INTRODUCTION
Delayed graft  funct ion (DGF) is  a  post-

transplantation phenomenon which adversely 
influence the allograft functionality and survival. 

It is also shown that rejection episodes are more 
frequent in organs with DGF than it is in those 
that function immediately.1-4

Ischemic reperfusion injury (IRI) is a common 



Glutathione S-Transferase Polymorphisms in Kidney Transplants—Azmandian et al

242 Iranian Journal of Kidney Diseases | Volume 11 | Number 3 | May 2017

event in kidney transplantation, and it is considered 
as one of the main contributors to acute kidney 
injury and DGF in allografts.3,5 In the ischemic 
phase, reduction of oxygen supply triggers 
production of reactive oxygen species (ROS) and 
an acidotic environment, which eventually result 
in phospholipolysis, endothelial membrane injury, 
and thrombin-mediated fibrin deposition.3,5 In the 
reperfusion phase, these injuries are deteriorated by 
migration of inflammatory cells and reintroduction 
of oxygen into the damaged tissue.  Excess 
oxygen plus activity of inflammatory cells lead to 
production of more ROS and thereby more intense 
damages to the cells and finally their apoptosis.

Among the numerous endogenous defence 
mechanisms against ROS and oxidative injury, 
glutathione plays a critical role in homeostasis of 
cellular redox environment.6,7 Many studies have 
reported glutathione deficiency could intensify 
oxidative stress and IRI in different organs.5,8-11 
Glutathione S-transferases (GSTs) are a family 
of enzymes that catalyse the conjugation of the 
reduced glutathione thiolate anion with a wide 
range of electrophiles including ROS.6 Glutathione 
S-transferases are highly polymorphic and 
these polymorphisms are likely to contribute to 
interindividual differences in response to oxidants. 
Recent studies emphasize the potentially distinctive 
roles of GST enzymes as crucial determinants of 
the development of IRI.12

To our knowledge, the role of GST polymorphisms 
in kidney allograft outcome has been reported in one 
study.13 In this study, like the most related studies, 
only the role of donors’ genetics in transplantation 
has been evaluated. Considering the crucial role 
of oxidative stress in the IRI, contribution of IRI 
to development of DGF after kidney allograft 
transplantation, and also the probable role of donors’ 
genetics in transplantation, we hypothesized that 
GSTM1 and GSTT1 polymorphisms may partly 
explain individual variability in allograft function 
after transplantation. The aim of this study was to 
investigate the association between donors’ and 
recipients’ GSTM1 and GSTT1 polymorphisms and 
DGF, creatinine clearance, and oxidative stress 
parameters in kidney allograft recipients.

MATERIALS AND METHODS
Patients

One hundred and eighty-two recipient-donor 

pairs who had undergone kidney transplantation 
at 1 center (Afzalipour Hospital, Kerman, Iran) 
were enrolled in this prospective cohort study. 
The inclusion criteria for patients were grafting 
transplant from a living person, the first kidney 
transplant, and signing the consent form.

Delayed graft function was defined by stringent 
criteria on the basis of the Boom definition and 
independent from the need for dialysis,2 as we 
reported in our previous articles.14-16 According 
to this definition, an increase, no change, or a less 
than 10% decrease in the serum creatinine level 
in 3 consecutive days during the 1st week after 
transplantation was considered as DGF. Creatinine 
clearance was calculated using the Cockcroft-Gault 
formula, which in turn estimated glomerular 
filtration rate in mL/min.

Glutathione S-transferase M1 and T1 
Genotyping

G e n o m i c  D N A  w a s  i s o l a t e d  f r o m 
ethylenediaminetetraacetic acid whole blood using 
a rapid salting out DNA extraction method. After 
measuring the quality and quantity of the extracted 
DNA by determination of A260/A280, aliquots of the 
DNA were stored in Tris-ethylenediaminetetraacetic 
acid buffer at -70°C until the analysis of genotypes. 
According to our previous protocol,17-19 a multiplex 
polymerase chain reaction (PCR) was performed 
to detect the null alleles of the GSTM1 and GSTT1 
genes. The c-Abl gene was used as internal positive 
control. The primers used to amplify genotypes 
were 5’-GAA CTC CCT GAA AAG CTA AAG 
C-3’ and 5’-GTT GGG CTC AAA TAT ACG GTG 
G-3’ as forward and reverse primers, respectively, 
for the GSTM1 (X68676.1, GeneBank), resulting in 
a 219-bp band, and 5’-TTC CTT ACT GGT CCT 
CAC ATC TC-3’ and 5’-TCA CCG GAT CAT GGC 
CAG CA-3’ as forward and reverse, respectively, 
for the GSTT1 (AB057594.1, GeneBank) genotype, 
resulting in a 450-bp product. As internal control, 
the c-Abl gene was amplified using 5’-TTC AGC 
GGC CAG TAG CAT CTG ACT-3’ and 5’-TGT 
GAT TAT AGC CTA AGA CCC GGA GCT TTT-
3’ as forward and reverse primers, respectively, 
producing a 750-bp product. The PCR reactions 
were resolved on 2% agarose gel electrophoresis 
and the PCR products were detected with ethidium 
bromide. The absence of the GSTM1- or GSTT1-
specific fragments indicated the corresponding 



Glutathione S-Transferase Polymorphisms in Kidney Transplants—Azmandian et al

243Iranian Journal of Kidney Diseases | Volume 11 | Number 3 | May 2017

null genotype, whereas the c-Abl specific fragment 
confirmed the presence of amplifiable DNA in the 
reaction mixture. The reliability and validity of the 
PCR method were assessed through reconducting 
the genotype assays using at least a 10% sample of 
our DNA samples. The results for all reassessments 
were 100% concordant.

Statistical Analysis
Continuous variables, including oxidative stress 

parameters, were compared using the unpaired t 
test according to the DGF occurrence and GSTM1 
and GSTT1 polymorphisms. Individuals with at least 
1 GSTM1 and GSTT1 active gene were coded 1 in 
analysis, and the second category included persons 
who were GSTM1 and GSTT1 null (coded zero). The 
logistic regression model was used to determine 
the association between the GSTM1 and GSTT1 
polymorphisms and DGF in a univariable model. 
Odds ratios (ORs) and 95% confidence interval (CI) 
were used to estimate the risk of the association 
between DGF and a specific polymorphism. 
Backward regression analyses evaluated the 
independent predictors of the creatinine clearance 
at the discharge day. The association between the 
dependent variables (DGF and creatinine clearance 

at the day discharge) and the GST polymorphisms 
was adjusted using multivariable regression in 
the presence of potential confounders.15,20 For all 
the tests, a P value less than .05 was considered 
significant. All the analyses were conducted using 
the SPSS software (Statistical Package for the Social 
Sciences, version 16.0, SPSS Inc, Chicago, IL, USA).

RESULTS
Demographics, Clinical, and Laboratory 
Parameters

Eighty-two percent of the donors and 62% of the 
recipients were men (Table 1). The mean values of 
age for the donors and recipients were 28.6 ± 5.8 
years and 40.7 ± 15.4 years old, respectively. Of all 
of the recipients, 11% and 20% suffered from acute 
rejection and DGF, respectively. Demographics of 
the recipients and donors according to their GSTM1 
and GSTT1 polymorphisms are shown in Table 1.

Oxidative Stress Parameters and Delayed Graft 
Function

As it is shown in the Figure, the level of lipid 
peroxidation was significantly higher in the 
recipients who had DGF than those who had a 
normal functioning allograft.

Parameter Total GSTM1 GSTT1 
M1 Null P T1 Null P

Donors
Age, y 28.6 ± 0.4 27.9 ± 0.5 30.2 ± 0.7 .02 28.5 ± 0.6 28.7 ± 0.6 .86
Body mass index, kg/m2 23.2 ± 0.3 23.2 ± 0.4 23.1 ± 0.7 .88 23.4 ± 0.5 22.4 ± 0.5 .25
Sex, n

Male 149 103 46 104 45
Female 33 33 10 .94 28 5 .08

Recipients
Age, y 40.5 ± 1.1 40.1 ± 1.3 42.6 ± 2.3 .35 41.3 ± 1.3 38.5 ± 2.3 .28
Body mass index, kg/m2 22.9 ± 0.4 22.9 ± 0.4 22.8 ± 0.7 .91 23.2 ± 0.5 22.2 ± 0.8 .29
Sex, n

Male 112 86 26 81 31
Female 61 45 17 .54 47 14 .49

Systolic blood pressure, mm Hg 158.6 ± 1.7 162.3 ± 1.9 148.9 ± 3.5 .001 160.2 ± 2.0 154.5 ± 3.5 .15
Diastolic blood pressure, mm Hg 95.9 ± 1.2 98.2 ± 1.8 92.5 ± 3.8 .13 95.9 ± 2.1 96.2 ± 3.6 .92
Mean arterial pressure, mm Hg 112.2 ± 1.2 116.3 ± 2.7 108.4 ± 3.6 .08 111.0 ± 2.8 113.4 ± 4.1 .61

Recipient diagnosis, %
End-stage renal disease 55.3 48 56 59 50
Diabetic nephropathy 10.6 8.3 11.4 8.9 7.7
Hypertension 8.2 2.1 0.0 3.6 19.2
Polycystic kidney 9.4 8.3 11.4 10.7 7.7
Glomerulonephritis 12.9 16.7 8.6 14.3 11.5
Others 3.6 16.6 12.6 … 13.5 13.9 …

Table 1. Donor, Recipient and Transplant Characteristics by GSTM1 and GSTT1 Polymorphisms
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GSTM1 Polymorphism and Delayed Graft 
Function

The relationship between the donors and 
recipients’ GSTM1 polymorphisms and the incidence 
of DGF is shown in Table 2. The frequency of 
GSTM1 null was significantly higher in the patients 
with DGF (OR, 0.38; 95% CI, 0.17 to 0.86; P = .02). 
There was also a significant association between 
the donors’ GSTM1 polymorphism and DGF events 
in the recipients (OR, 0.31; 95% CI, 0.14 to 0.68; 

P = .003). Considering the role of confounders in 
association between the GSTM1 polymorphism 
and DGF,20 multivariable logistic regression was 
performed in the presence of age, sex, body mass 
index, and mean arterial pressure variables. The 
adjusted association between the recipients’ GSTM1 
polymorphism and DGF abolished in the presence 
of these confounders (OR, 0.37; 95% CI, 0.37 to 
1.06; P = .06).

GSTT1 Polymorphism and Delayed Graft 
Function

The relationship between the donors and 
recipients’ GSTT1 polymorphisms and the incidence 
of DGF is shown in Table 3. The frequency of GSTT1 
null was not significantly different in the patients 
with and without DGF (OR, 1.67; 95% CI, 0.64 to 4.35; 
P = .29). There was also no significant association 
between the donors’ GSTT1 polymorphism and 
DGF events in the recipients (OR, 1.17; 95% CI, 
0.48 to 2.80; P = .73). These associations remained 
insignificant in multivariable logistic regression 
in the presence of age, sex, body mass index, and 
mean arterial pressure variables.

Combination of Donors and Recipients’ GSTM1 
Polymorphisms and Delayed Graft Function

Combinations of recipients and donors’ GSTM1 
polymorphisms were analysed in order to determine 
if their interaction had a joint effect on DGF or 
not. There was a significant associations between 
combinations of recipient and donor GSTM1 and 
DGF (OR, 0.20; 95% CI, 0.07 to 0.64, P = .006; 
Table 4).

GSTM1 Polymorphism
Delayed Graft Function Unadjusted Analysis Adjusted Analysis*

Yes No Odds Ratio (95% 
Confidence Interval) P Odds Ratio (95% 

Confidence Interval) P

Recipients 19 (59) 115 (79) 0.38 (0.17 to 0.86) .02 0.37 (0.13 to 1.06) .06
Donors 15 (47) 111 (74) 0.31 (0.14 to 0.68) .003 0.17 (0.06 to 0.48) .001

*Multivariable regression adjusted for age, sex, body mass index, and mean arterial pressure variables

Table 2. Association Between Kidney Allograft Donors and Recipients’ GSTM1 Polymorphism and Delayed Graft Function 

Lipid peroxidation (LPO) and total antioxidant capacity (TAC) of 
allograft recipients and occurrence of DGF.

GSTT1 Polymorphism
Delayed Graft Function Unadjusted Analysis Adjusted Analysis*

Yes No Odds Ratio (95% 
Confidence Interval) P Odds Ratio (95% 

Confidence Interval) P

Recipients 26 (72) 104 (72) 1.67 (0.64 to 4.35) .29 0.92 (0.32 to 2.68) .88
Donors 24 (75) 108 (74) 1.17 (0.48 to 2.80) .73 1.67 (0.51 to 5.36) .39

Table 3. Association Between Kidney Allograft Donors and Recipients’ GSTT1 Polymorphism and Delayed Graft Function

*Multivariable regression adjusted for age, sex, body mass index, and mean arterial pressure variables
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GSTM1 and GSTT1 Polymorphisms and 
Oxidative Stress Parameters

The relationships between the donors and 
recipients’ GSTM1 and GSTT1 polymorphisms 
and the levels of lipid peroxidation and total 
antioxidant capacity are shown in Table 5. There 
was a significant association between GSTM1 
polymorphism and lipid peroxidation as the level 
of lipid peroxidation was higher in the recipients 
with GSTM1 null polymorphisms. Adjustment for 
the potential confounding factors did not change 
the associations.

GSTM1 and GSTT1 Polymorphisms and 
Creatinine Clearance on Discharge Day

Changes in the creatinine clearance at the 
discharge is  shown in Table 6.  Among the 
polymorphisms,  only the recipient GSTM1 

polymorphism correlated with creatinine clearance 
at discharge. This association was abolished 
when analysis was adjustment for the potential 
confounding factors.

DISCUSSION
The results of this study showed that lipid 

peroxidation was significantly higher in the allograft 
recipients who underwent DGF. There was also an 
association between both donors and recipients’ 
GSTM1 polymorphism and DGF as the frequency of 
DGF was significantly higher in the patients with 
GSTM1 null allele or those who received allograft 
from GSTM1-null donors. Furthermore, linear 
regression demonstrated that lipid peroxidation in 
the allograft after transplantation was significantly 
linked to both donors and recipients’ GSTM1 
polymorphism. There was no significant association 

GSTM1 Polymorphism
Delayed Graft Function Unadjusted Analysis Adjusted Analysis*

Yes No Odds Ratio (95% 
Confidence Interval) P Odds Ratio (95% 

Confidence Interval) P

Recipient null-donor null 7 (22) 13 (9) 1 (referent) … 1 (referent) …
Recipient null-donor M1 6 (19) 17 (12) 0.65 (0.18 to 2.42) .53 0.14 (0.02 to 0.99) .04
Recipient M1-donor null 9 (28) 25 (17) 0.67 (0.20 to 2.21) .51 0.31 (0.60 to 1.46) .14
Recipient M1-donor M1 10 (31) 90 (62) 0.20 (0.07 to 0.64) .006 0.09 (0.02 to 0.40) .002

Table 4. Association of Combination of Kidney Allograft Donors and Recipients’ GSTM1 Polymorphisms With Delayed Graft Function

*Multivariable regression adjusted for age, sex, body mass index, and mean arterial pressure variables

Polymorphism

Lipid Peroxidation Total Antioxidant Capacity
Unadjusted Analysis Adjusted Analysis† Unadjusted Analysis Adjusted Analysis†

Coefficient 
(95% CI) P Coefficient 

(95% CI) P Coefficient 
(95% CI) P Coefficient 

(95% CI) P

Recipient GSTM1 -27 (-40 to -15) < .001 -22 (-37 to -8.0) .003 -53 (-197 to 91) .46 -77 (-259 to 104) .40
Recipient GSTT1 -3.2 (-16 to 9.6) .61 -8.6 (-22 to 5) .21 -161 (-301 to -22) .02 -101 (-266 to 63) .23
Donor GSTM1 -19 (-31 to -8) .001 -22 (-34 to -9) .001 -81 (-212 to 49) .22 -94 (-252 to 63) .24
Donor GSTT1 -13.3 (-25 to -1) .03 -11 (-24 to 2) .09 -53 (-189 to 82) .44 -75 (-234 to 83) .35

Table 5. Association Between Kidney Allograft Donors and Recipients’ GSTM1 and GSTT1 Polymorphisms and Lipid Peroxidation and 
Total Antioxidant Capacity

*CI indicates confidence interval.
†Multivariable regression adjusted for age, sex, body mass index, and mean arterial pressure variables.

Polymorphism

Creatinine Clearance
Unadjusted Analysis Adjusted Analysis*

Coefficient 
(95% Confidence Interval) P Coefficient 

(95% Confidence Interval) P

Recipient GSTM1 8.3 (0.6 to 15.9) .03 8.3 (0.6 to 15.9) .03
Recipient GSTT1 -0.5 (-8.8 to 7.8) .91 -0.5 (-8.8 to 7.8) .91
Donor GSTM1 4.1 (-3.6 to 11.7) .28 4.1 (-3.6 to 11.7) .28
Donor GSTT1 2.7 (-5.3 to 10.8) .49 2.7 (-5.3 to 10.8) .49

Table 6. Association Between Kidney Allograft Donors and Recipients’ GSTM1 and GSTT1 Polymorphisms and Creatinine Clearance*

*Multivariable regression adjusted for age, sex, body mass index, and mean arterial pressure variables
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between GSTT1 polymorphism and DGF and 
oxidative stress parameters.

Evidence suggests that oxidative stress is a 
common mechanism of injury in acute and chronic 
rejections.21-27 By altering the redox environment, 
ROS modulate the activation of transcription factors 
and cytokine genes involved in acute cellular 
rejection.28-30

The role of GST polymorphisms in the intensity 
of lipid peroxidation and kidney transplant 
outcome was also investigated by using both 
recipients and their donors. Frequency of GSTM1 
null polymorphism was higher in the recipients 
who had DGF and those who received allograft 
from the donors with GSTM1 null genotype. There 
were also association between recipients’ GSTM1 
and donors’ GSTM1  and lipid peroxidation. 
Glutathione S-transferases  are  a  family of 
enzymes that protect the living system against 
electrophilic substances such as ROS through 
conjugating them with glutathione.31 Although 
the effect of GST polymorphisms with oxidative 
stress and lipid peroxidation in kidney disease 
has been reported by several authors.30,32,33 There 
are few studies regarding the association of GST 
polymorphisms and kidney allograft functions. 
Singh and colleagues13 showed that patients with 
variant genotype of GSTM1 and GSTP1 were at 
a higher risk for rejection and DGF, respectively, 
supporting the hypothesis for involvement of 
GST isoform variants in allograft outcome in 
kidney transplant recipients. However, Azarpira 
and colleagues34 reported no association between 
GSTM1 and GSTT1 gene polymorphisms and acute 
rejection. One interesting aspect of our findings 
was that the donors’ GSTM1 polymorphism was 
also involved in the allograft functions. In fact this 
finding which highlights the role of donors’ genetics 
in transplantation has usually been overshadowed 
in most of the related studies.

Delayed graft function, as one of the main 
risk factors for acute rejection, is a multifactorial 
condition which is affected by the donor and 
recipient factors. The main factor for developing 
DGF is IRI of kidney allografts.3,5,35 Free radicals 
including ROS are extensively generated in the early 
stage of reperfusion that cause allograft dysfunction 
during the first posttransplant week in various 
organs, including the liver,36 brain,37 heart,35,38 and 
kidney.39-41 Reactive oxygen species is known to 

trigger cytokine and chemokine cascades through 
nuclear factor-κB activation.42 The transcription 
factor nuclear factor-κB is crucial in a series of 
cellular processes such as inflammation, immunity, 
cell proliferation and apoptosis.42 Consistent with 
these findings, Danilovic and associates43 showed 
that treatment of recipients with N-acetyl cysteine, 
as an antioxidant, could decrease DGF in recipients 
and made those recipients required fewer days 
of dialysis.

CONCLUSIONS
Our study demonstrated that donors and 

recipients’ GSTM1 polymorphism could determine 
the occurrence of DGF in kidney transplantation. 
Meanwhile, lipid peroxidation may play an 
important role in pathophysiology of DGF. 
Administration of antioxidants before kidney 
transplantation and considering both the donor and 
recipient polymorphisms of antioxidant genes can 
help to improve kidney allograft transplantation 
outcomes. Although the research has reached its 
aims, there are some avoidable limitations. Because 
of time limit, this research was conducted on a 
relatively small sample size. Meanwhile, there was 
no possibility for confirming the acute rejection 
by biopsy.
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