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Key Genes and Signaling Pathways Contribute to the 
Pathogensis of Diabetic Nephropathy

Hailing Yang,1* Dede Lian,2* Xiaofei Zhang,3 Hongjun Li, 
Guangda Xin5

Introduction. Diabetic nephropathy (DN) is a serious complication 
of diabetes mellitus involving damage to the capillaries in the 
glomerulus. This study aimed to explore key genes and signaling 
pathways participate in the progression of DN.
Methods. Two gene expression profile datasets GSE1009 and 
GSE30528 downloaded from Gene Expression Omnibus (GEO) 
were used to analyze the differentially expressed genes (DEGs) 
between DN samples and controls. Coupled two-way clustering 
(CTWC) and correspondence analysis were performed to explore 
the potential functions of DEGs. Then, Gene Ontology (GO) terms 
and pathways associated with DEGs were identified, followed 
by constructing of the co-expressed gene network and module. 
Ultimately, the regulatory network based on the DEGs, miRNAs 
and transcription factors (TFs) was established.
Results. Total 283 common DEGs were identified from the two 
datasets, including 219 down-regulated ones (bone morphogenetic 
protein 7 (BMP7), decay accelerating factor (CD55) and coagulation 
Factor V (F5) etc.) and 64 up-regulated ones (inhibin beta c subunit 
(INHBC) and colony stimulating factor 1 receptor (CSF1R) etc.). 
The miRNA-TF regulatory network was established with three 
miRNAs, 8 TFs and 58 DEGs. Besides, three significant pathways 
including cytokine-cytokine receptor interaction, complement 
and coagulation cascades and TGF-beta signaling pathways were 
identified.
Conclusion. BMP7, CD55, CSF1R, INHBC and F5 are likely to take 
crucial roles in the pathogenesis of DN.
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INTRODUCTION
Diabetic nephropathy (DN), a progressive kidney 

disease, is a serious complication of diabetes 
mellitus involving damage to the capillaries in the 
glomerulus.1 It is characterized by extracellular 
matrix (ECM) accumulation, tubulointerstitial 
degeneration, and fibrosis correlated with a sharp 
decline in the glomerular filtration rate.2 Currently, 
over 380 million people are affected by DN 
worldwide. The international diabetes federation 

has estimated that this number is expected to 
increase to 592 million by 2035.3 DN is the primary 
cause of morbidity and mortality in diabetic patients 
and leads to end-stage renal disease.4, 5 As such, 
it is urgent to explore the mechanism of DN for 
its further prevention and treatment.

Numerous studies showed that pathogenic factors 
of hypertension, hyperglycemia, hyperlipidemia 
and inflammatory response are involved in the 
development of DN.6,7 Hyperglycemia mainly 
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initiates the pathological process of DN via 
pathways such as polyol pathway.8 Increasing 
evidences show that pro-inflammatory cytokines 
play critical roles in pathogenesis of DN, such as 
interleukin 1 (IL-1), interleukin 6 (IL-6) and tumor 
necrosis factor- α (TNF-α).9-11 Additionally, various 
kinases and oxidative stress mediators can also 
activate the process of DN.12 However, clinical 
diagnosis and treatment on the basis of these genes 
and pathways for the management of DN remain 
unsatisfactory. Thus, the aim of this study is to 
identify key genes and pathways related to DN 
based on two datasets GSE1009 and GSE30528.

In the current study, differentially expressed 
genes (DEGs) in DN were identified by screening 
two datasets GSE1009 and GSE30528. Furthermore, 
coupled two-way clustering analysis (CTWC) was 
performed to confirm the specificity of DEGs. 
Later, we selected common DEGs with consistency 
through correspondence analysis, and then analyzed 
the potential functions of common DEGs with 
consistency through gene ontology (GO) functional 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses. Thereafter, 
co-expressed gene network and module were 
established. Ultimately, the regulatory network 
on the basis of DEGs, miRNAs and transcription 
factors (TFs) was constructed.

MATERIALS AND METHODS
Data preprocessing and DEGs screening

The gene expression profiles of GSE100913 and 
GSE3052814 were downloaded from National 
Center of Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) database (http://www.
ncbi.nlm.nih.gov/geo/) on the basis of platform of 
GPL8300 and GPL571. The two datasets were tissue 
samples from glomerulus, including 6 samples (3 
samples of controls and 3 samples of DN patients) 
and 22 samples (13 samples of controls and 9 
samples of DN patients) respectively.

We downloaded the raw CEL data and used 
the oligo package (ver.1.40.2) (http://www.
bioconductor.org/packages/oligo.html) in R 
(ver.3.1.3) language to pre-process all the data by 
performing background correction, conversion of 
original data and quartile data normalization.15,16 
Afterwards, DEGs in the two datasets were screened 
via the limma (ver.3.32.5) (http://bioconductor.org/
packages/limma.html) 17 package. Ultimately, the 

setting of thresholds were |logFC| larger than .585 
and false discovery rate (FDR) value less than .05.

CTWC for DEGs
CTWC can be used to gather the genes which 

have approximate expression and it is convenient for 
further research. In this study, the gene expression 
of the same tissue was significantly different in 
different states of disease.18 We extracted the 
expression values of DEGs in each samples from 
standardized transcriptome, then the CTWC19,20 
of expression values were performed based 
on the Euclidean distance21 via the pheatmap 
package22 (ver.1.0.8) (https://cran.r-project.org/
package = pheatmap) in R (ver.3.1.3) language. The 
results were presented with a heat map.

Correspondence analysis of DEGs in GSE1009 
and GSE30528 profiles

All DEGs screened from GSE1009 and GSE30528 
profiles were analyzed via correspondence analysis. 
First, the similarities and differences of DEGs sets 
were compared, and the results were presented 
with the Venn diagram. Combining the results of 
DEGs in two datasets, the common DEGs that were 
significantly different in the two datasets were 
selected for the next research. Next, the consistency 
(up-regulated simultaneously or down-regulated 
simultaneously) of common DEGs in GSE1009 
and GSE30528 were compared. Afterwards, the 
Pearson correlation coefficient was calculated, 
and DEGs with consistency in the two datasets 
were selected from the common DEGs for further 
research. Finally, in order to show the similarity of 
gene expression in two datasets, the CTWC based 
on the expression values of DEGs with consistency 
were performed.

Functional and pathway analysis of DEGs with 
consistency

Database for Annotation, Visualization and 
Integrated Discovery (DAVID, ver.6.7) (https://
david.ncifcrf.gov/) 23,24 gene functional classification 
tool has been developed for relating the functional 
terms with gene lists by clustering algorithm. In 
the present study, the DEGs with consistency 
were divided into significant up-regulated and 
significant down-regulated gene sets according 
to the logFC value. Then, significant correlations 
of GO analysis and KEGG pathway analysis were 
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performed using the DAVID. In the current study, 
the p-value was measured by hypergeometric 
distribution. The significant screening threshold 
was set as P-value < .05.

Co-expressed gene network construction and 
module partition

Based on the expression values of DEGs with 
consistency in GSE1009 and GSE30528, the Pearson 
correlation coefficient of expression value between 
each two DEGs were calculated. Subsequently, only 
gene pairs with correlation coefficient larger than 
.8 in the two datasets were retained. At the end, 
network of co-expressed gene was constructed 
and displayed with Cytoscape (ver. 3.3) (http://
www.cytoscape.org/).25 Meanwhile, the module 
partition and function annotation for co-expressed 
gene network were performed using the Molecular 
Complex Detection (MCODE, http://apps.
cytoscape.org/apps/mcode, parameter: Degree 
cutoff = 2, Node score cutoff = 0.2, K-core = 2)26 
plugin of Cytoscape (ver. 3.3) and Biological 
Networks Gene Ontology tool (BINGO) 27 with 
threshold value of adjusted P < .05.

Retrieval of miRNA associated with DN
We used the miR2 Disease28 database (http://

watson.compbio.iupui.edu:8080/miR2Disease/
index.jsp) to search miRNAs associated with DN. 
“Diabetic nephropathy” was acted as a key word 
in the database for searching the DN-correlated 
miRNAs that have been confirmed by report. Each 
item of miR2 Disease contains detailed information 
about the connection of miRNA and disease, such 
as the ID of miRNA, designation of disease, a 
brief description of relationship between miRNA 
and disease, detection methods and references for 
miRNA expression. After obtaining miRNAs related 
to disease, we retrieved the target genes directly 
associated with miRNA via miRanda (http://www.
microrna.org/microrna/home.do).29 The target 
genes regulated by the miRNA associated with 
disease were mapped to the DEGs with consistency. 
Ultimately, the regulatory network of gene and 
miRNA associated with DN was constructed.

Construction of miRNA-TF regulatory network
To further comprehend the genes that constituted 

co-expression network, we searched for the TFs 
significantly correlated with co-expression genes 

through Web-based Gene Set Analysis Toolkit 
(WebGestalt, ver. 2017) (http://www.webgestalt.
org/option.php).30 The P value less than .05 was 
selected as the significance threshold for screening 
correlated TFs. The target genes regulated by 
TFs were mapped to the target genes involved in 
gene-miRNA regulatory network, then the target 
gene regulatory network of miRNA and TF were 
constructed. Finally, the regulated genes were 
analyzed for functional and pathways analysis.

RESULTS
Data preprocessing and DEGs screening
After datasets from GSE1009 and GSE30528 were 

normalized, we screened DEGs by limma package. 
Total 1521 genes screened from GSE1009 expressed 
significantly different between DN patients and 
healthy controls, including 1008 up-regulated 
DEGs and 513 down-regulated DEGs. Meanwhile, 
a total of 1348 DEGs were obtained from GSE30528 
dataset, including 414 up-regulated DEGs and 934 
down-regulated DEGs.

CTWC for DEGs
We extracted the expression values of significant 

DEGs from normalized gene expression profiles 
of GSE1009 and GSE30528, and then heatmaps 
of CTWC on the basis of expression values were 
constructed via the pheatmap. As shown in Figure 1, 
the different types of samples can be separated 
distinctly by the selected expression values in the 
two datasets. It is shown that the DEGs screened 
from those two datasets were characteristics.

Correspondence analysis of DEGs in GSE1009 
and GSE30528 profiles

As shown in Figure 2A, 312 common DEGs in 
the two datasets were obtained by comparison. 
Among these common DEGs, 283 common DEGs 
were consistent in the direction of differential 
expression in the two datasets (Figure 2B). The 
CTWC results of 283 common DEGs showed that 
expression values of these common DEGs can also 
separate the two datasets completely (Figure 2C 
and 2D). Therefore, we selected the 283 common 
DEGs for further research.

Functional and pathways analysis of DEGs with 
the consistency

The 283 common DEGs were divided into 219 
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Figure 1. The heatmap of clustering analysis of differentially expressed genes (DEGs) from GSE1009 (A) and GSE30528 (B).

Figure 2. A, Venn diagram of differentially expressed genes (DEGs) from GSE1009 and GSE30528 comparison; B, Scatter diagram 
of DEGs with consistency from GSE1009 and GSE30528. The red dots stand for the DEGs whose expression were up-regulated 
simultaneously in two datasets; while the green dots stand for the DEGs whose expression were down-regulated simultaneously in 
two datasets; the grey dots stand for the DEGs whose differentially expressed directions were inconsistent. The heatmap of clustering 
analysis of DEGs with consistency from GSE1009 (C) and GSE30528 (D).
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down-regulated ones (BMP7, CD55 and F5 etc.) 
and 64 up-regulated ones (INHBC and CSF1R 
etc.) according to logFC. Then we performed GO 
and pathway analyses for up-regulated DEGs and 
down-regulated DEGs, respectively. The results 
showed that down-regulated genes were enriched 
in 23 GO functions and 6 KEGG pathways (Figure 
3A and 3C). Meanwhile, up-regulated genes were 
enriched in 22 GO functions and 6 KEGG pathways 
(Figure 3B and 3D).

Co-expressed gene network construction and 
module partition

Total  2184 co-expressed gene pairs were 
obtained and used to construct the co-expressed 
gene network. As shown in Figure 4, there were 
208 gene nodes (176 down-regulated genes and 

32 up-regulated genes) and 2184 connection 
edges (74 negative correlation connection edges 
and 2110 positive correlation connection edges) 
in co-expressed gene network. Besides, total 4 
co-expressed gene modules were obtained via 
MCODE and BINGO plugin (data not shown).

Retrieval of miRNA associated with DN
We obtained three miRNAs (hsa-miR-377,31 

hsa-miR-216a,32 and hsa-miR-21732) associated 
with DN through the miR2 Disease database. 
Afterwards, genes with expression correlation 
in co-expression network were mapped to target 
genes of these three miRNAs. A total of 142 pairs 
of connection between miRNA and target genes 
were obtained and used to construct the miRNA 
regulatory network. As shown in Figure 5, total 99 

Figure 3. Functional enrichment histogram of down-regulated differentially expressed genes (DEGs) (A) and up-regulated DEGs (B). 
The horizontal axis represents the node of Gene Ontology (GO) annotation, while the vertical axis represents the number of genes 
involved in the node. Besides, blue represents biological process (BP); orange represents cellular component (CC); green represent 
molecular function (MF); the black lines with the dot represent -lg (p value). Pathways enrichment sector graph of down-regulated DEGs 
(C) and up-regulated DEGs (D). The different colors represent different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 
the component is labeled as the name of pathways, the percent represents the proportion of genes involved in the pathways, each 
component is marked with a significant p value for each pathways.
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Figure 4. Network of co-expressed differentially expressed genes (DEGs) with consistency. The green lines represent the connection 
of negative correlation gene pairs, while the red lines represent the connection of positive correlation gene pairs. The change of nodes 
color from green to red presents the change of logFC from negative to positive. The regular triangle and inverted triangle present 
significantly up-regulated DEGs and down-regulated DEGs respectively.

Figure 5. Regulatory networks of differentially expressed genes (DEGs) -miRNAs. The regular triangle and inverted triangle present 
significantly up-regulated DEGs and down-regulated DEGs respectively. The quadrangle presents miRNA. The change of triangle color 
from green to red presents the change of logFC from negative to positive.
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nodes (3 miRNAs and 96 genes (87down-regulated 
and 9 up-regulated) ) and 142 connection edges (50 
connection edges correlated with has-miR-377, 52 
connection edges correlated with has-miR-217 and 
40 connection edges correlated with has-miR-216a) 
were contained in miRNA regulatory network.

Construction of miRNA-TF regulatory network
To further comprehend the target genes regulated 

by miRNA associated with DN in miRNA regulatory 
network, we obtained 8 TFs significantly correlated 
with genes in miRNA regulatory network through 
WebGestalt (Table 1). Then the regulatory network 
of miRNA and TF was constructed. As shown in 
Figure 6, there were 69 nodes (3 miRNAs, 8 TFs and 
58 DEGs (3 up-regulated and 55 down-regulated) 
and 211 connection edges (90 miRNA regulate target 
gene connections and 121 TF regulate target gene 
connections) in miRNA-TF regulatory network. 
Then we performed GO and pathway analysis for 
genes in miRNA-TF regulatory network. As shown 

in Table 2, the genes (BMP7, INHBC, CSF1R, CD55 
and F5) were prevailingly enriched in 3 different 
KEGG pathways, such as cytokine-cytokine receptor 
interaction, complement and coagulation cascades 
and transforming growth factor (TGF) signaling 
pathways. Besides, genes were also enriched 
in 10 GO terms, including negative regulation 
of cell proliferation, cell adhesion and kidney 
development etc.

Figure 6. Regulatory network of differentially expressed genes (DEGs) -miRNAs-transcription factors (TFs). The inverted triangle 
presents significantly down-regulated DEGs, and the regular triangle presents significantly up-regulated DEGs. The change of node 
color from green to red presents the change of logFC from negative to positive. The white quadrangle and rhombus present miRNA and 
TF respectively. The grey connection represents regulatory relationship of miRNA and target genes, and the red connection represents 
regulatory relationship of TF and target genes.

TF ID Parameters
E12 DB_ID: 2409 rawP = 2.92e-19; adjP = 1.81e-17
FOXO4 DB_ID: 2416 rawP = 8.08e-19; adjP = 2.50e-17
MAZ DB_ID: 2430 rawP = 8.15e-14; adjP = 1.26e-12
FREAC2 DB_ID: 2417 rawP = 6.21e-14; adjP = 1.26e-12
NFAT DB_ID: 2437 rawP = 1.37e-13; adjP = 1.70e-12
AP1 DB_ID: 2402 rawP = 1.95e-12; adjP = 1.51e-11
PAX4 DB_ID: 2445 rawP = 3.97e-12; adjP = 2.73e-11
CHX10 DB_ID: 2408 rawP = 1.15e-10; adjP = 7.13e-10

Table 1. List of Significant Transcription Factors (TFs)

Note. adj stands for adjust.
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DISCUSSION
DN is one of a major cause of morbidity 

and mortality in diabetes mellitus.33 Although 
numerous studies have been carried out to 
explore the pathogenesis of DN, it is still not 
elucidated completely. In this paper, we performed 
comprehensive bioinformatical analysis to obtain 
more target genes and pathways involved in the 
development of DN. The results of this study 
indicated that three pathways, cytokine-cytokine 
receptor interaction, complement and coagulation 
cascades and TGF-beta signaling pathways, might 
play pivotal roles in DN. Importantly, five genes 
(BMP7, INHBC, CSF1R, CD55 and F5) enriched in 
the three pathways and regulated by three miRNAs 
(hsa-miR-377, hsa-miR-216a, and hsa-miR-217) were 
likely to participate in the pathogenesis of DN.

The TGF-beta superfamily contains a group of 
secreted peptides, such as the bone morphogenetic 
protein (BMP) family and the TGF-beta family.34 
Among these secreted peptides, TGF-beta signaling 
is likely to serve a vital part in the proceeding 
of DN. Previous investigations suggested that 
TGF-β1, a member of TGF-beta family, is a major 
cause for ECM accumulation.35 Furthermore, a new 
study found that dencichine performed a potential 
therapeutic effect on DN by down-regulating 
TGF-β/Smad signaling in DN glomeruli . 36 
Moreover, our results also revealed that genes in 
miRNA-TF regulation network were significantly 

enriched in TGF-beta signaling pathway. These 
results demonstrated that activation of the TGF-
beta signaling pathway might implicate in the 
pathogenesis of DN. Consequently, we speculated 
that genes (BMP7, INHBC, etc.) involved in the 
TGF-beta signaling pathway might also associated 
with DN.

BMP-7, a member of the TGF-beta superfamily, 
plays a vital role in the progression of kidney and 
regulation of nephrogenesis.37 Consistent to our 
results, a previous study found that expression of 
BMP-7 was decreased at advanced stage of DN.38 
In the present study, BMP-7 was significantly 
enriched in the TGF-beta signaling pathway. These 
findings also indicated that BMP-7 might be related 
to progression of DN through its interaction with 
TGF-beta signaling pathway. There is no evidence 
to prove the function of INHBC in DN. However, 
INHBC also belongs to TGF-beta superfamily.39 
Besides, INHBC was regulated by miR-377 in this 
study, which has been confirmed to take a critical 
role in the pathophysiology of DN.31 Therefore, 
INHBC might be related to DN mediated by TGF-
beta signaling pathway and miR-377.

Kelly et al. demonstrated that the renal injury 
in DN is mediated by activation of complement 
system.40 Our results showed that CD55 and F5 
were enriched in complement and coagulation 
cascades pathway. Thus, we speculate that CD55 
and F5 might take a vital part in the development 

Term Count P Genes
GO:0008285~negative regulation of cell proliferation 9 5.56E-05 COL4A3, CBLB, BMP2, NDN, ABI1, CD24, 

GPNMB, CXADR, BMP7
GO:0042127~regulation of cell proliferation 12 1.35E-04 COL4A3, CBLB, BMP2, NDN, F3, VEGFA, ABI1, 

CD24, GPNMB, CXADR, BMP7, FGF1
GO:0007167~enzyme linked receptor protein signaling 

pathway
8 2.76E-04 BMP2, NDN, MYO1E, VEGFA, ABI1, BMP7, 

FGF1, CSF1R
GO:0050767~regulation of neurogenesis 5 .003489 BMP2, MAP1B, NPTN, CD24, BMP7
GO:0051094~positive regulation of developmental process 6 .003838 LPL, BMP2, F3, MAP1B, NPTN, BMP7
GO:0007155~cell adhesion 9 .004365 COL4A3, F5, GNE, FERMT2, NPTN, CD24, 

GPNMB, CXADR, CD2AP
GO:0022610~biological adhesion 9 .004403 COL4A3, F5, GNE, FERMT2, NPTN, CD24, 

GPNMB, CXADR, CD2AP
GO:0009967~positive regulation of signal transduction 6 .004933 BMP2, F3, VEGFA, CD24, BMP7, CITED2
GO:0001822~kidney development 4 .005637 TCF21, BMP2, MYO1E, BMP7
GO:0060284~regulation of cell development 5 .00734 BMP2, MAP1B, NPTN, CD24, BMP7
hsa04060:Cytokine-cytokine receptor interaction 5 .032411 BMP2, VEGFA, INHBC, BMP7, CSF1R
hsa04350:TGF-beta signaling pathway 3 .042629 BMP2, INHBC, BMP7
hsa04610:Complement and coagulation cascades 3 .043133 CD55, F5, F3

Table 2. Functional and Pathways Analyses for Differentially Expressed Genes (DEGs) in miRNA-transcription Factors (TFs) Regulatory 
Network

Note. GO stands for Gene Ontology.



Key genes and signaling pathways for DN—Yang et al

95Iranian Journal of Kidney Diseases | Volume 13 | Number 2 | March 2019

of DN. For example, the activation of C3  is 
strongly associated with DN in rats.40 To our 
knowledge, CD55 can inhibit the activation of C3.41 
Consequently, down-regulation of CD55 is likely 
to contribute to the progression of DN through 
diminishing the inhibition of C3 activation. F5, also 
known as Factor V Leiden (FVL), serves as a central 
regulatory role in hemostasis.42 Wang et al. found 
that the mutation of FVL reduced albuminuria in 
murine diabetic nephropathy and in human type 
1 and type 2 diabetic patients.43 Furthermore, 
Peter et al. demonstrated that FVL mutation is 
relevant for early stages of DN by modifying the 
glomerular dysfunction.44 These results indicated 
that FVL mutation might has a protective effect in 
DN. Thus, the abnormal expression of FVL is also 
likely to take a key part in the pathogenesis of DN.

Wu and co-workers demonstrated that cytokines 
and their receptors might be applied to predict 
the progression of DN.45 Additionally, Kato et al. 
observed that miR‑217-mediated phosphatase and 
tensin homologue (PTEN) downregulation might 
contribute to the activation of protein kinase B 
(PKB/AKT).46 CSF1R, which regulated by miR-
217, was enriched in pathways associated with 
cytokine-cytokine receptor interaction in the current 
study. Besides, Cannarile et al. revealed that CSF1R 
plays a crucial role in the proliferation, survival, 
and motility of macrophages.47 A study uncovered 
that CSF1R in macrophages could activate the 
protein kinase B (PKB/AKT) through multiple 
signal transduction pathways.48 Moreover, Kattla 
et al. confirmed that PKB/AKT might serve as a 
pivotal role in the pathogenesis of DN.46 Therefore, 
we speculate that CSF1R is likely to associate with 
DN mediated by PKB/AKT and miR-217.

However, the predicted results cannot be verified 
by laboratory data due to the limitation of sample 
extraction. In further studies, we will confirm the 
expression of the above discussed DEGs through 
establishing the animal model. Also, the interaction 
of DEGs and regulatory relationship between TFs 
and DEGs will be verified.

CONCLUSIONS
In summary, our results indicated that the 

complement and coagulation cascades, TGF-beta 
signaling pathway and cytokine-cytokine receptor 
interaction pathway were likely to correlate 
with the progression of DN. Five genes (BMP7, 

INHBC, CSF1R, CD55 and F5) regulated by the 
three pathways might serve a crucial role in the 
pathogenesis of DN. Theses findings might provide 
a further understanding for the pathogenesis of DN 
and help for the development of novel therapeutic 
targets in DN treatment.
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