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Ferric Citrate Attenuates Cardiac Hypertrophy and Fibrosis 
in a Rat Model of Chronic Kidney Disease
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Introduction. Chronic kidney disease (CKD) promotes hypertrophy 
and fibrosis in heart, and increases the risk of cardiovascular 
mortality. Ferric citrate is a dietary phosphate binder used to control 
hyperphosphatemia in CKD patients. It has been shown to raise 
iron stores, improve anemia and secondary hyperparathyroidism, 
and decrease vascular calcification in CKD patients. The present 
study was done to explore the effects and mechanism of actions 
of ferric citrate on cardiac hypertrophy and fibrosis.
Materials and Methods. Male SD rats were randomized to CKD 
(5/6 nephrectomized) and sham-operated control groups. CKD 
rats were fed regular diet or a diet containing 4% ferric citrate. 
After 8 weeks, hemoglobin, renal function and cardiovascular 
endpoints including blood pressure, heart/body weight ratio, 
serum N-terminal prohormone of brain natriuretic peptide (NT-
proBNP), cardiac histology and markers of hypertrophy, fibrosis 
and inflammation were assessed.
Results. Compared to the controls, untreated CKD group exhibited 
hypertension, elevated serum urea, creatinine, phosphate, and NT-
proBNP concentrations, anemia, cardiomegaly,cardiac hypertrophy 
and fibrosis. Treatment with ferric citrate significantly increased 
hemoglobin and serum iron concentrations, reduced serum 
phosphate and NT-proBNP levels and ameliorated hypertension, 
heart/body weight ratio, cardiac hypertrophy, fibrosis and 
inflammation. In addition, ferric citrate administration reduced the 
size of cardiomyocytes and expressions of myocardin, transforming 
growth factor-β, interleukin-6 and monocyte chemotactic protein 1.
Conclusions. Treatment with ferric citrate attenuated renal failure 
and cardiovascular abnormalities including myocardial hypertrophy 
and fibrosis in CKD rats.
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INTRODUCTION
Chronic kidney disease (CKD) has emerged 

as a major public health issue worldwide. The 
prevalence of CKD in the United States has 
increased from 10% during the 1988-1994 periods to 
13.1% in 1994-2004.1 CKD results in hypertension, 

accelerated atherosclerosis, arteriosclerosis, and 
heart failure.2 Cardiovascular disease (CVD) is the 
leading cause of premature mortality and accounts 
for 50% of death from congestive heart failure, 
acute myocardial infarction, and sudden cardiac 
death in the CKD population.3 The kidneys and 
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heart have a complex relationship whereby renal 
failure can cause heart failure and vice versa; an 
interplay, which is termed cardiorenal syndrome 
(CRS). CRS type 4 is defined as chronic abnormalities 
in renal function that lead to cardiac disease and 
is characterized by left ventricular hypertrophy, 
fibrosis and diastolic dysfunction.4,5 Ferric citrate 
is used as a dietary phosphate binder to control 
hyperphosphatemia in CKD and end stage renal 
disease (ESRD) patients.6-9 It concurrently improves 
iron deficiency anemia by replenishing iron stores 
and has been shown to ameliorate secondary 
hyperparathyroidism and vascular calcification in 
CKD.10-12 Based on the aforementioned data present 
study was undertaken to explore the nature and 
the underlying mechanisms of the effects of ferric 
citrate on CKD-associated cardiac abnormalities 
using the well-established rat model of experimental 
CKD induced by 5/6 nephrectomy.

MATERIALS AND METHODS
Study Groups

The study was approved by the University 
of California, Irvine Institutional Committee for 
the Use and Care of Experimental Animals. We 
purchased 8-week old male Sprague-Dawley rats 
from Charles River Labs (Raleigh, NC). They were 
housed in a climate-controlled vivarium with 12h 
day/night cycles and provided access to food and 
water ad libitum. The rats were randomized to the 
sham-operated control and CKD groups. The CKD 
rats were subjected to 5/6 nephrectomy by removing 
the upper and lower thirds of the de-capsulated 
left kidney, followed by right nephrectomy a week 
later. The control (CTL) group underwent sham 
operation. We induced anesthesia with 5% inhaled 
isoflurane (Piramal Clinical Care, Bethlehem, PA) 
which was maintained with 2-4% isoflurane. For 
pain relief, rats were given 0.05 mg/kg Buprenex 
(Reckitt Benckiser Pharmaceutical Inc., Richmond, 
VA, USA). We randomly assigned the CKD rats 
to regular diet or diet containing 4% ferric citrate 
for 6 weeks. The animals were then placed in 
metabolic cages for a 24h urine collection. We 
measured systolic blood pressure (SBP) by tail 
plethysmography as described previously.13 The 
animals were euthanized by cardiac exsanguination 
under general anesthesia and plasma and heart 
tissue were collected. The heart was weighed and 
the left ventricle (LV) was dissected and cross-

sectioned into two parts. The apex was fixed in 
10% buffered formalin for histological analysis 
and the other portion was snap frozen in liquid 
nitrogen and stored at -80°C for protein analysis.

Blood and Urine Biochemical Assays
Serum urea nitrogen (BUN), calcium, phosphorus, 

iron,  and serum and urine creatinine were 
determined using Quanti Chrom Assay Kits 
purchased from Bio Assay Systems (Hayward, CA). 
The blood hemoglobin was determined using the 
Aim Strip Hb meter (Ermarine Laboratories Inc., 
San Antonio, TX). Plasma N-terminal prohormone 
of brain natriuretic peptide (NT-proBNP) was 
measured using NT-proBNP ELISA Kit (Catalog, 
OKEH00475, Aviva Systems Biology Corporation, 
San Diego, CA).

Histologic Analysis
The heart apex was fixed in 10% buffered formalin 

and embedded into paraffin. Five-micron sections 
were stained with hematoxylin and eosin (H&E) and 
images were captured on a Nikon Eclipse 80i (Nikon 
Instruments Inc., Melville, NY) and analyzed using 
Image J software (version 1.47, National Institutes 
of Health, Bethesda, MD). Images of 10 fields per 
LV section at 400× magnification were obtained, 
and the size of cardiomyocytes was determined 
after calibration with a stage micrometer. The 
mean values were calculated per LV section and 
reported as square-micron.

Western Blot Analyses
Cytoplasmic protein extracts from the LV tissue 

were prepared and proteins of interest were 
quantified as previously described14,15 using the 
following primary antibodies purchased from 
Abcam (Cambridge, MA): Rabbit antibodies against 
rat myosin heavy chain 7B (MyH7B, ab172967), 
myocardin (ab203614) and tropomyosin (ab133292), 
collagen 1 (ab34710), transforming growth factor-β 
(TGF-β, ab92486), interleukin-6 (IL-6, ab9324). 
Antibody against monocyte chemotactic protein 1 
(MCP-1, NBP1-07035) was obtained from Novus 
Biologicals (Littleton, CO). Mouse antibody against 
glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) (ab8245, Abcam) was utilized as the 
housekeeping control. Band intensities were 
measured using Image J software (version 1.47, 
National Institutes of Health, Bethesda, MD).
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Statistical Analysis
Data are expressed as the mean ± standard 

error. Group differences were analyzed by one-
way analysis of variance (ANOVA) with Tukey’s 
post-test. Statistical significance was defined as a 
P value of less than .05. Statistical analysis was 
performed using GraphPad Prism, version 6.01 
(GraphPad Software, Inc. San Diego, CA).

RESULTS
General Data

Data are summarized in Table 1. Compared to 
the CTL group the CKD animals had significantly 
higher arterial blood pressure, serum creatinine, 
BUN and phosphate levels and significantly lower 
creatinine clearance, blood hemoglobin and serum 
iron levels. Consumption of the 4% ferric citrate-
containing diet resulted in significant reduction 
of blood pressure and serum phosphate values 
and significant increase in blood hemoglobin and 
serum iron concentration in the CKD animals. 
Serum NT-proBNP concentration was significantly 
increased in CKD animals when compared to the 
CTL group. Ferric citrate therapy reduced serum 
NT-proBNP levels in the CKD animals (Figure 1).

Impact of CKD and Ferric Citrate Treatment on 
Cardiac Hypertrophy

Data are shown in Figure 2. The heart to body 
weight ratio (a marker of cardiac hypertrophy) 
was significantly increased in CKD animals 
when compared to the CTL group. Ferric citrate 
therapy resulted in significant improvement in the 
heart to body weight ratio in the CKD animals. 
Representative photomicrographs of H & E stained 

LV tissue cardiomyocytes are shown in Figure 2. The 
LV tissue from CKD animals exhibited significant 
hypertrophy with increased size of cardiomyocytes. 
Ferric citrate therapy significantly reduced the size 
of the LV cardiomyocyte in CKD rats. Furthermore, 
cardiac biomarkers of hypertrophy including 
MyH7B, myocardin and tropomyosin protein levels 
were significantly increased in the untreated CKD 
animals when compared to the CTL group. Ferric 
citrate therapy reversed upregulations of myocardin 
in the CKD animals. Although the levels of MyH7B 
and tropomyosin in ferric citrate treated group 
were lower than the untreated CKD group, the 
difference did not reach statistical significance.

Impact of CKD and Ferric Citrate Treatment 
on Biomarkers of Cardiac Fibrosis and 
Inflammation

Data are shown in Figure 3. The molecular 

CTL
(N = 6)

CKD
(N = 6)

CKD+FC
(N = 6)

Final Body Weight (g) 588.4 ± 31.4 497.3 ± 15.2 485.6 ± 8.2
Systolic Blood Pressure (mmHg) 111.2 ± 3.6 145.4 ± 2.1a 111.4 ± 4.1b

Serum Creatinine (mg/dL) 0.36 ± 0.1 0.46 ± 0.14a 0.35 ± 0.12a

Serum BUN (mg/dL) 10.1 ± 0.3 23.6 ± 1.5a 24.3 ± 1.3a

Creatinine Clearance (mL/min*kg) 298.6 ± 160.6 164.5 ± 25.3a 198.8 ± 23.9a

24h Urine Volume (mL) 14.3 ± 1.0 26.3 ± 1.9a 20.0 ± 0.5a,b

Serum Phosphate (mg/dL) 8.5 ± 0.2 12.2 ± 0.2a 8.7 ± 0.6b

Serum Calcium (mg/dL) 9.8 ± 0.7 9.0 ± 0.5 9.8 ± 0.3
Hemoglobin (g/dL) 13.4 ± 0.09 11.4 ± 0.5a 13.7 ± 0.1b

Hematocrit (%) 40.6 ± 0.6 39.1 ± 0.4 40.3 ± 0.3
Serum Iron (μg/dL) 218.4 ± 20.4 167.1 ± 7.5a 196.2 ± 21.8b

Abbreviations. BUN, blood urea nitrogen; CKD, chronic kidney disease; FC, 4% ferric citrate in diet.
a) P < .05 (ANOVA) vs. CTL; b) P < .05 (ANOVA) vs. CKD. Results are shown as mean ± SEM.

Table 1. Body Weight, Tail Blood Pressure, and Serum and Urine Biochemistries in the 3 Study Groups

Figure 1. Serum N-terminal Pro Brain Natriuretic (NT-proBNP) 
Concentration
Data are mean ± SEM, n = 6 per group, * P < .05 (ANOVA)
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markers of cardiac fibrosis including the LV tissue 
collagen 1 and TGF-β were significantly higher in 
the untreated CKD group when compared to the 
CTL animals. Ferric citrate therapy significantly 
reduced the TGF-β protein abundance. Although 
the collagen-1 abundance in ferric citrate treated 
group was lower than that found in the untreated 
CKD group, the difference did not reach statistical 
significance. The biomarkers of cardiac inflammation 
including IL-6 and MCP-1 were significantly higher 
in the left ventricles of the untreated CKD group 
compared to the CTL animals. Ferric citrate therapy 
reversed upregulations of IL-6 and MCP-1 in the 
CKD animals.

DISCUSSION
Using rats with 5/6 nephrectomy-induced 

CKD, which is known to cause cardiac remodeling 

and fibrosis,16-18 we found that treatment with 
ferric citrate ameliorated anemia hypertension, 
cardiac hypertrophy and slowed progression 
of renal failure. Biomarkers of cardiomyocyte 
hypertrophy and cardiac fibrosis and inflammation 
including myocardin, IL-6, MCP-1 and TGF-β, 
were significantly elevated in untreated CKD rats 
and were significantly lowered with ferric citrate 
administration. Likewise, circulating NT-proBNP 
levels, which were elevated in untreated CKD 
rats, were significantly reduced with ferric citrate 
administration.

Impaired kidney function results in cardiorenal 
syndrome (CRS) type 4 which is characterized by left 
ventricular hypertrophy and diastolic dysfunction 
and contributes to the high rate of cardiovascular 
morbidity and mortality in the CKD population. 
Despite common use of the cardiovascular protective 

Figure 2. Impact of CKD and Ferric Citrate Treatment on Cardiac Hypertrophy
A) Heart (mg) / Body Weight Ratio (mg). B) Representative microphotographs of LV tissue stained with hematoxylin & eosin and quantification 
analysis for mean cross sectional areas of cardiomyocytes in each group. C-F) Representative western blots and group data depicting the LV 
protein abundance of C. MyH7B, D) Myocardin, and E) Tropomyocin. Data are mean ± SEM, n = 6 per group, * P < .05 (ANOVA)
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medications such as angiotensin converting enzyme 
inhibitors,9 angiotensin receptor blockers20 and 
beta blockers,21 the rate of adverse cardiovascular 
events remains extremely high in CKD patients.22 
Cardiovascular risk factors in CKD patients include 
anemia, volume overload, electrolyte disorders, 
hypertension, hyperphosphatemia, oxidative 
stress, systemic inflammation, dyslipidemia, and 
accumulation of uremic toxins which work in concert 
to promote, arrythmia, LVH, CHF, atherosclerosis, 
and arteriosclerosis in patients with CKD.23-30 In 
particular, hyperphosphatemia has been linked to 
heart failure and increased risk of cardiac mortality 
by promoting vascular calcification via induction of 
osteogenic transformation and apoptosis of vascular 
smooth muscle cells.31-34 In the current study, in 
addition to ameliorating hyperphosphatemia, 

treatment with the phosphate binder, ferric citrate, 
ameliorated anemia, attenuated hypertension and 
improved renal function in CKD animals. These 
composite effects had protective benefits on the heart 
by suppressing cardiac hypertrophy and fibrosis.

Ca lc ium loading  can  promote  vascu lar 
calcification in patients and animals with CKD.35 
Administration of ferric citrate, which is a calcium-
free phosphate binder, did not change serum calcium 
levels in CKD rats. This represents an advantage 
of ferric citrate over calcium containing phosphate 
binders. Indeed, meta-analyses have shown a lower 
rate of cardiovascular calcification and mortality 
in CKD patients treated with non-calcium-based 
phosphate binders, as compared to those treated 
with calcium-based phosphate binders.36-37

Ferric citrate has dual benefits in that besides 

Figure 3. Impact of CKD and Ferric Citrate Treatment on Biomarkers of Cardiac Fibrosis and Inflammation.
A-D) Representative western blots and group data depicting the LV protein abundance of A. Collagen 1, B) TGF-β, C) IL-6, and D) MCP-1. Data 
are mean ± SEM, n = 6 per group, * P < .05 (ANOVA)
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controlling hyperphosphatemia it improves anemia 
by enhancing availability of iron for erythropoiesis. 
In a phase 3 randomized clinical trials, treatment 
of CKD patients with ferric citrate for 16 weeks, 
increased mean transferrin saturation and ferritin 
levels by 18.4% and 170 ng/ml respectively.12 
Iron deficiency has been shown to correlate with 
pathophysiologic changes in the myocardium 
including enhanced inotropic responsiveness and 
decreased expression of the type-1 transferrin 
receptor.38,39 Several clinical trials have shown 
beneficial effects of iron repletion in heart failure 
including improved LV ejection fraction and 
patient’s quality of life.0-43 Anemia in itself has 
been implicated in deterioration of kidney function 
by mediating hypoxia-induced tubular epithelial 
cell injury and interstitial fibrosis.44 Furthermore, 
by enhancing oxygen delivery to myocardium and 
reversing tachycardia, improvement of anemia 
attenuates cardiac hypertrophy and fibrosis.

CONCLUSIONS
In addition to controlling hyperphosphatemia 

administration of ferric citrate attenuated anemia 
and left ventricular hypertrophy and fibrosis in 
CKD rats. Long-term clinical trials are needed to 
investigate its impact on cardiovascular outcomes 
in CKD and ESRD patients.
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