# Discordance Between Using Estimated and Measured Glomerular Filtration Rate for Drug Dosing in Kidney Transplant Recipients

Morteza Nabiee,<sup>1</sup> Nasim Vahidfar,<sup>2</sup> Simin Dashti-Khavidaki,<sup>1</sup> Mohammad-Reza Khatami,<sup>3</sup> Mehrshad Abbasi,<sup>2</sup> Mansoor Gatmiri,<sup>3</sup> Mohammad-Hossein Shojamoradi,<sup>3</sup> Neda Naderi,<sup>3</sup> Azam Alamdari<sup>3</sup>

**Introduction.** Estimating glomerular filtration rate (eGFR) using different formulas is common clinical practice for evaluating kidney function and drug dosing. But, the performance of available eGFR equations is questionable during early days after kidney transplantation.

**Methods.** This study compared the performance of three common eGFR equations (Cockcroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)) in relation with measured GFR (mGFR) using clearance of Tc-99m-diethylenetriaminepentaacetic acid, 7 to 10 days post kidney transplantation. Agreement of mGFR and different eGFR equations in the staging of kidney function and dosing of 8 common antimicrobials were assessed.

**Result.** Thirty kidney and 5 simultaneous pancreas-kidney transplant recipients were included. CG applying total body weight (CG<sub>TBW</sub>) had the lowest bias (-12 mL/min/ 1.73 m<sup>2</sup>) and the highest percentage of estimation within 30% of mGFR (71.4%). MDRD showed the best precision (13.14 mL/min/ 1.73m<sup>2</sup>) and linear correlation with mGFR. CKD-EPI and MDRD acted better than CG for staging the level of kidney function. CG<sub>TBW</sub> had the lowest discordance rate with mGFR for antimicrobials dosing (33.6%). Discordance rates of drug dosing between mGFR and eGFR formulas were greater for drugs that have higher dosing levels such as (val)-ganciclovir ( $\geq$  54.3%).

**Conclusion.** Until developing more accurate methods for estimating kidney function during first 1 to 2 weeks after kidney transplantation,  $CG_{TBW}$  method is suggested for drug dose adjustment and MDRD or CKD-EPI equation for the staging of kidney function in these patients, keeping in mind that these formulas underestimate the level of kidney function in new transplant recipients.

IJKD 2021;15:213-21 www.ijkd.org

## **INTRODUCTION**

<sup>1</sup>Faculty of Pharmacy, Tehran

University of Medical Sciences,

University of Medical Sciences,

<sup>3</sup>Nephrology Research Center,

Keywords. anti-infective agents,

glomerular filtration rate, kidney transplantation, kidney function

Tehran University of Medical

Sciences, Tehran, Iran

Vali-asr Hospital, Tehran

<sup>2</sup>Department of Nuclear Medicine,

Tehran, Iran

Tehran, Iran

tests

Kidneys play important roles in the body and their dysfunction causes many complications necessitating regular assessment of kidney function.<sup>1</sup> Glomerular filtration rate (GFR) is an acceptable parameter for assessment of kidney function. For this evaluation, measurement of exogenous agents clearance (*e.g.* inulin, iohexol,

iothalamate) is the most accurate method but it is not applicable in routine clinical practice; because of this, estimating GFR with some equations that use endogenous markers has been substituted.<sup>2</sup> Nowadays Cockcroft-Gault (CG),<sup>3</sup> Modification of Diet in Renal Disease (MDRD),<sup>4</sup> and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)<sup>5</sup> are the most common equations for estimating GFR<sup>2</sup> (Table 1).

In kidney transplant recipients, estimation of GFR with these available equations is the matter of debate, since serum creatinine (SCr) concentration is in a non-steady state especially during early post-transplant days. In addition, several interfering factors such as high dose corticosteroid administration during the first days after transplantation and starting prophylactic antimicrobials such as trimethoprimsulfamethoxazole alter SCr concentration in these patients.<sup>6</sup> Significant disagreements have been reported between the performance of different SCrbased estimated GFR (eGFR) equations at different times in the first post-transplant year.<sup>7</sup> At the moment, 4 variables MDRD and CKD-EPI seem to be the best SCr-based equations<sup>8</sup> in kidney transplant recipients. Due to immunosuppressions used for the prevention of organ rejection, antimicrobials are used extensively after transplantation for prophylaxis and treatment of infections;<sup>9,10</sup> most of these medications need renal dose adjustment.<sup>11</sup> Our purpose was to compare three popular eGFR equations (CG, MDRD, and CKD-EPI) with the gold standard measured GFR (mGFR) and investigating bias, precision, and accuracy of them in kidney transplant recipients. In addition, agreements of mGFR and eGFR equations in staging kidney function and dosing of common antimicrobials in kidney transplant recipients were evaluated.

# MATERIALS AND METHODS Study Design and Participants

This prospective study was conducted on kidney transplant recipients at days 7 to 10 after transplantation surgery. The study was performed in Imam Khomeini Hospital Complex (IKHC) from September 2018 through February 2020. Study participants were included if they aged 18 years or older, with stable SCr for 48 to 72 hours, and consented to participate in the study. Exclusion criteria included the occurrence of delayed graft function or acute allograft rejection in the first post-transplant week and receiving medications that interfere with the laboratory method of SCr measurement (e.g. cefazolin, ceftizoxime, and methyldopa) or medications that inhibit tubular secretion of creatinine (e.g. cimetidine) except for trimethoprim (because all new transplant recipients take trimethoprim-sulfamethoxazole for prophylaxis of pneumocystis jiroveci pneumonia during the first post-transplant year in this center). Pregnant and nursing women were also excluded. The study protocol was approved by the local ethical committee (IR.NIMAD.REC.1397.203). The immunosuppressive regimen consisted of antithymocyte globulin induction followed by oral prednisolone, tacrolimus, and mycophenolate mofetil/sodium as maintenance immunosuppressive regimen. Relevant clinical and laboratory data of kidney recipients and donors were gathered from medical records. Discordance between mGFR and different eGFR formulas in the staging of kidney function was assessed according to the staging system recommended by Kidney Disease Improving Global Outcomes (KDIGO).<sup>12</sup> Also, the discordance between mGFR and eGFR equations in the dosing of 8 commonly used antimicrobial medications (including ampicillin-sulbactam, fluconazole,

| Equation                                                | Formula                                                                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Cockcroft–Gault (CG)                                    | [ (140 – age (years)) × weight (kg) × 0.85 (if female)] / [72 × SCr (mg/dL)]                               |
| CrCL (mL/min)                                           |                                                                                                            |
| Modification of Diet in Renal Disease (MDRD 4-variable) | 186 × SCr (mg/dL) <sup>-1.154</sup> × age (years) <sup>-0.203</sup> × 1.212 (if African-American)          |
| GFR (mL/min/ 1.73 m <sup>2</sup> )                      | × 0.742 (if female)                                                                                        |
| Chronic Kidney Disease Epidemiology Collaboration       | 141 × min [SCr (mg/dL)/k,1] <sup>α</sup> × max [SCr (mg/dL)/k, 1] <sup>-1.209</sup> × 0.993 <sup>Age</sup> |
| (CKD-EPI)                                               | × 1.018 (if female) × 1.159 (if black)                                                                     |
| GFR (mL/min/ 1.73 m <sup>2</sup> )                      | k is 0.7 for females and 0.9 for males,                                                                    |
|                                                         | $\alpha$ is -0.329 for females and -0.411 for males,                                                       |
|                                                         | min indicates the minimum of SCr/k or 1,                                                                   |
|                                                         | and max indicates the maximum of SCr/k or 1.                                                               |

Table 1. Three Equations for Estimating GFR

Abbreviations: CrCL, creatinine clearance; GFR, glomerular filtration rate; SCr, serum creatinine concentration.

ganciclovir, meropenem, piperacillin-tazobactam, trimethoprim-sulfamethoxazole, valganciclovir, and vancomycin) was evaluated according to dosing recommendations based on the Lexicomp database.<sup>13</sup> Antimicrobial dose modifications using mGFR and different eGFR formulas were simulated and no intervention was performed on patients' drug ordering. Patients' drugs were dosed by the responsible physician.

### **GFR Measurement**

Clearance of Tc-99m-diethylenetriaminepentaacetic acid (Tc-99m-DTPA) was measured by dual plasma sampling as the gold standard method for mGFR in the nuclear medicine ward of IKHC. Blood samples were drawn at 60 and 180 minutes after 3 mCi of Tc-99m-DTPA injection. After centrifuging, plasma radioactivity was counted and GFR was calculated by Russell two-sample method formula.<sup>14</sup> mGFR was standardized to body surface area (BSA) of 1.73 m<sup>2</sup>.

#### **GFR Estimation Methods**

SCr measurement was performed by the Jaffe method. Estimation of GFR using SCr-based equations was done using CG, 4-variable MDRD, and CKD-EPI (Table 1). CG was calculated using both ideal body weight (IBW) and total body weight (TBW) of patients. CG equation results were standardized to BSA of 1.73 m<sup>2</sup>.

#### **Statistical Analysis**

Quantitative and qualitative variables are presented as mean ± standard deviation (SD) and number (percent), respectively. The Bland-Altman analysis was performed for detecting mGFR and eGFR equation difference. Mean of differences was calculated as bias and the SD of differences as precision. The level of agreement between mGFR and each eGFR methods was calculated by  $\pm$  1.96 × SD of differences. Percentages of estimation within 30% of the measured GFR (P30) were calculated as the accuracy of equations. Pearson correlation coefficient was used to investigate the linear relationship between mGFR and eGFR formulas. Gwet's15 coefficient was calculated to evaluate the agreement of mGFR and each eGFR formulas in kidney function staging and drug dose adjustment. Paired t-test was used to compare the mean of mGFR with that of each eGFR equations.

The analysis was performed using SPSS Statistics (version 26) and AgreeStat cloud-based available at AgreeStat360.com.

## RESULTS

A total of 35 patients including 30 kidney transplant recipients and 5 simultaneous pancreaskidney transplant recipients participated in this study. Twenty-two (62.9%) of them were male and the mean age of the patients was  $45.8 \pm 15.6$  years old. All of the transplanted organs were from deceased donors. Diabetes mellitus and hypertension were the most common comorbidities of recipients. The mean mGFR of recipients was  $64.7 \pm 16.7$  ml/min/1.73 m<sup>2</sup>. Demographic and clinical data of transplant recipients are shown in Table 2.

Bland-Altman plots of mGFR versus eGFR equations have been shown in Figure. CG applying total body weight (CG<sub>TBW</sub>) had the least bias (-12 mL/min/1.73 m<sup>2</sup>), and highest P30 accuracy (71.4%). Furthermore, the MDRD formula showed the best precision (13.14 mL/min/1.73 m<sup>2</sup>, Table 3). Limits of agreement with mGFR were as follows: CG<sub>TBW</sub> (-13.8 to 39.7 mL/min/1.73 m<sup>2</sup>), CG applying ideal body weight (CG<sub>IBW</sub>) (-12.5 to 42.0 mL/min/1.73 m<sup>2</sup>), MDRD (-12.1 to 39.3 mL/min/1.73 m<sup>2</sup>), and CKD-EPI (-14.1 to 40.7 mL/min/1.73 m<sup>2</sup>) (Figure). We found that the means of all eGFR equations had significant differences with mGFR using paired t-test (for all comparisons P < .001) (Table 3).

**Table 2.** Demographic and Clinical Data of Kidney Transplant

 Recipients

|                        | n (%)          |
|------------------------|----------------|
| Gender                 |                |
| Male                   | 22 (62.9)      |
| Female                 | 13 (37.1)      |
| ESRD Reason            |                |
| DM                     | 11 (31.4)      |
| HTN                    | 9 (25.7)       |
| ADPKD                  | 5 (14.3)       |
| Others                 | 10 (28.6)      |
|                        | Mean ± SD      |
| Age, y                 | 45.8 ± 15.6    |
| Weight, kg             | 61.2 ± 11      |
| BMI, kg/m <sup>2</sup> | $22.2 \pm 2.3$ |
| BSA, m <sup>2</sup>    | 1.68 ± 0.17    |
| SCr, mg/dL*            | $1.6 \pm 0.7$  |

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; BMI, body mass index; BSA, body surface area; DM, diabetes mellitus; ESRD, end-stage renal disease; HTN, hypertension; SCr, serum creatinine; SD, standard deviation. \*Serum Creatinine on Day of Measurement of GFR





A-D Bland–Altman Plots Depict the Difference Between mGFR and eGFR Equations (A-D). Abbreviations: CG<sub>TBW</sub>, cockcroft-gault applying total body weight; CG<sub>IBW</sub>, cockcroft-gault applying ideal body weight; CKD-EPI, chronic kidney disease epidemiology collaboration; eGFR, estimated GFR; GFR, glomerular filtration rate; MDRD, modification of diet in renal disease; mGFR, measured GFR.

| Table 3. Comparison | of mGFR with eGFR | Equations in I | Kidney Transplan                                                                                                 | t Recipients |  |
|---------------------|-------------------|----------------|------------------------------------------------------------------------------------------------------------------|--------------|--|
|                     |                   |                | and the second |              |  |
|                     |                   |                |                                                                                                                  |              |  |

|                   | Paired Difference |                |                                                |        |      |                              |  |
|-------------------|-------------------|----------------|------------------------------------------------|--------|------|------------------------------|--|
|                   | Mean ± SD         | r <sub>p</sub> | Mean Difference <sup>a</sup> ± SD <sup>b</sup> | Pc     | SMD  | Accuracy of P30 <sup>d</sup> |  |
| mGFR              | 64.74 ± 16.72     |                |                                                |        |      |                              |  |
| CG <sub>TBW</sub> | 52.71 ± 18.47     | 0.72           | 12.03 ± 13.20                                  | < .001 | 0.91 | 71.4                         |  |
| CG <sub>IBW</sub> | 49.97 ± 18.47     | 0.69           | 14.77 ± 13.91                                  | < .001 | 1.06 | 57.1                         |  |
| MDRD              | 51.14 ± 19.10     | 0.74           | 13.60 ± 13.14                                  | < .001 | 1.04 | 65.7                         |  |
| CKD-EPI           | 52.69 ± 20.99     | 0.72           | 12.05 ± 14.59                                  | < .001 | 0.83 | 62.9                         |  |

Abbreviations: CG<sub>IBW</sub>, cockcroft-gault applying ideal body weight; CG<sub>TBW</sub>, cockcroft-gault applying total body weight; CKD-EPI, chronic kidney disease epidemiology collaboration; eGFR, estimated GFR; GFR, glomerular filtration rate; MDRD, modification of diet in renal disease; mGFR, measured GFR; r<sub>p</sub>, pearson correlation coefficient; SD, standard deviation; SMD, standardized mean difference. <sup>a</sup>Bias, <sup>b</sup>Precision, <sup>c</sup>paired sample t-test, <sup>d</sup>percentage of estimates within 30% of the measured GFR

Pearson's correlation test showed strong correlation between mGFR and all eGFR formulas (Table 3). Moreover, there were strong correlations between CG and MDRD (r = 0.93), CG and CKD-EPI (r = 0.95), and MDRD and CKD-EPI (r = 0.99) methods (All P < .001).

Overall, there were substantial agreements between mGFR and eGFR equations regarding the staging of kidney function. CKD-EPI and MDRD had the best agreement with mGFR in staging the level of kidney function (Gwet's coefficient = 0.76) (Table 4). Additionally, agreement analysis was done to investigate discrepancies in dosing of 8 antimicrobials between mGFR and eGFR equations.  $CG_{TBW}$  showed the best agreement with mGFR in dosing of fluconazole, ganciclovir, meropenem, piperacillin-tazobactam, valganciclovir, and vancomycin. The agreement of  $CG_{TBW}$  with mGFR was the same as those for MDRD and CKD-EPI in dosing of ampicillin-sulbactam and trimethoprim-

|                   |         | mG        | FR        |    | I  | 0 "                  |                 |
|-------------------|---------|-----------|-----------|----|----|----------------------|-----------------|
| Kidney Function   |         | n (       | %)        |    |    | Overall Agreement    | Discordance (%) |
| Calegory -        | G1      | G2        | G3        | G4 | G5 | (Gwel's Coefficient) |                 |
| CG <sub>TBW</sub> |         |           |           |    |    |                      |                 |
| G1                |         | 1 (2.9)   |           |    |    | 0.73                 | 60              |
| G2                | 3 (8.6) | 7 (20)    | 3 (8.6)   |    |    |                      |                 |
| G3                |         | 10 (28.6) | 7 (20)    |    |    |                      |                 |
| G4                |         |           | 4 (11.4)  |    |    |                      |                 |
| G5                |         |           |           |    |    |                      |                 |
| CG <sub>IBW</sub> |         |           |           |    |    |                      |                 |
| G1                |         | 1 (2.9)   |           |    |    | 0.68                 | 68.6            |
| G2                | 3 (8.6) | 6 (17.1)  | 3 (8.6)   |    |    |                      |                 |
| G3                |         | 11 (31.4) | 5 (14.3)  |    |    |                      |                 |
| G4                |         |           | 6 (17.1)  |    |    |                      |                 |
| G5                |         |           |           |    |    |                      |                 |
| MDRD              |         |           |           |    |    |                      |                 |
| G1                | 1 (2.9) | 1 (2.9)   |           |    |    | 0.76                 | 51.4            |
| G2                | 2 (5.7) | 6 (17.1)  |           |    |    |                      |                 |
| G3                |         | 11 (31.4) | 10 (28.6) |    |    |                      |                 |
| G4                |         |           | 4 (11.4)  |    |    |                      |                 |
| G5                |         |           |           |    |    |                      |                 |
| CKD-EPI           |         |           |           |    |    |                      |                 |
| G1                | 1 (2.9) | 1 (2.9)   |           |    |    | 0.76                 | 51.4            |
| G2                | 2 (5.7) | 8 (22.9)  | 1 (2.9)   |    |    |                      |                 |
| G3                |         | 9 (25.7)  | 8 (22.9)  |    |    |                      |                 |
| G4                |         |           | 5 (14.3)  |    |    |                      |                 |
| G5                |         |           |           |    |    |                      |                 |

| Table 4. Agreement Between | mGFR and eGFR Equations | in the Staging of the | Kidney Function |
|----------------------------|-------------------------|-----------------------|-----------------|
|----------------------------|-------------------------|-----------------------|-----------------|

Abbreviations: CG<sub>IBW</sub>, cockcroft-gault applying ideal body weight; CG<sub>TBW</sub>, cockcroft-gault applying total body weight; CKD-EPI, chronic kidney disease epidemiology collaboration; eGFR, estimated GFR; GFR, glomerular filtration rate; mGFR, measured GFR; MDRD, modification of Diet in Renal Disease.

Notes. CKD categories: G1:  $\geq$  90 mL/min/ 1.73 m<sup>2</sup>, G2: 60 to 89 mL/min/ 1.73 m<sup>2</sup>, G3: 30 to 59 mL/min/ 1.73 m<sup>2</sup>, G4: 15 to 29 mL/min/ 1.73 m<sup>2</sup>, G5: < 15 mL/min/ 1.73 m<sup>2</sup>.

sulfamethoxazole (Gwet's coefficient = 0.94) (Table 5). In all of the agreement analysis,  $CG_{TBW}$  acted better than  $CG_{IBW}$  for drug dosing when compared with the gold standard (mGFR). Generally, underdosing occurred more common than overdosing (92.3 versus 7.7%) when mGFR compared with different eGFR equations.

Lowest discordance rates between mGFR and eGFR in dosing of antimicrobials were seen for ampicillin-sulbactam and trimethoprimsulfamethoxazole (11.4%). The highest discordance rates between mGFR and eGFR methods happened for ganciclovir and valganciclovir dosing and in the best way, discordance rate of 54.3% was seen between mGFR and  $CG_{TBW}$ . Overall in drug dose adjustment,  $CG_{TBW}$  with an agreement rate of 66.4% with mGFR was the best eGFR equation followed by CKD-EPI with 63.9% agreement with mGFR (Table 5). There were significant differences in drug dosing determined by mGFR in comparison with those calculated by eGFR equations. Standardized mean difference (SMD) showed that these differences in dosing were not negligible (Table 6).

#### DISCUSSION

According to the Kidney Disease Outcomes Quality Initiative (K/DOQI) recommendation, to evaluate the performance of an eGFR equation, bias, precision, and accuracy should be assessed.<sup>16</sup> We found that  $CG_{TBW}$  and CKD-EPI had the lowest bias compared with mGFR; Besides, MDRD showed the best precision followed by  $CG_{TBW}$ .  $CG_{TBW}$  had the best P30 accuracy followed by MDRD. Similar to our study, among different eGFR formulas, CG showed the lowest bias in Kamaruzaman *et al.* study on kidney transplant patients over 1-year post-transplantation.<sup>17</sup> The study by Salvador *et al.* 10 weeks after kidney transplantation showed that MDRD had the lowest bias and highest

## eGFR Versus mGFR in Kidney Transplantation-Nabiee et al

| ŗ     |                                                                                                                                                                                                                                                                                                                                                                | <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CGTBW | CGIBW                                                                                                                                                                                                                                                                                                                                                          | MDRD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CKD-EPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11.4  | 14.3                                                                                                                                                                                                                                                                                                                                                           | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.94  | 0.92                                                                                                                                                                                                                                                                                                                                                           | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 31.4  | 37.1                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.42  | 0.29                                                                                                                                                                                                                                                                                                                                                           | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 54.3  | 62.9                                                                                                                                                                                                                                                                                                                                                           | 68.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.66  | 0.62                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 42.9  | 45.7                                                                                                                                                                                                                                                                                                                                                           | 45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.76  | 0.74                                                                                                                                                                                                                                                                                                                                                           | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 22.9  | 31.4                                                                                                                                                                                                                                                                                                                                                           | 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.90  | 0.84                                                                                                                                                                                                                                                                                                                                                           | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11.4  | 17.1                                                                                                                                                                                                                                                                                                                                                           | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.94  | 0.90                                                                                                                                                                                                                                                                                                                                                           | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 54.3  | 68.8                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.71  | 0.62                                                                                                                                                                                                                                                                                                                                                           | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37.1  | 45.7                                                                                                                                                                                                                                                                                                                                                           | 37.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.80  | 0.75                                                                                                                                                                                                                                                                                                                                                           | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33.6  | 40.4                                                                                                                                                                                                                                                                                                                                                           | 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | CGTBW           11.4           0.94           31.4           0.42           54.3           0.66           42.9           0.76           22.9           0.90           11.4           0.94           54.3           0.76           22.9           0.90           11.4           0.94           54.3           0.71           37.1           0.80           33.6 | CGTBW         CGIBW           11.4         14.3           0.94         0.92           31.4         37.1           0.42         0.29           54.3         62.9           0.66         0.62           42.9         45.7           0.76         0.74           22.9         31.4           11.4         17.1           0.90         0.84           11.4         17.1           0.90         0.84           11.4         17.1           0.90         0.84           31.4         0.90           54.3         68.8           0.71         0.62           37.1         45.7           0.80         0.75           33.6         40.4 | CGTBW         CGIBW         MDRD           11.4         14.3         11.4           0.94         0.92         0.94           31.4         37.1         40           0.42         0.29         0.23           54.3         62.9         68.6           0.66         0.62         0.57           42.9         45.7         45.7           42.9         31.4         28.6           0.76         0.74         0.73           22.9         31.4         28.6           0.90         0.84         0.87           11.4         17.1         11.4           0.90         0.84         0.87           31.4         28.6         0.90           0.90         0.84         0.87           11.4         17.1         11.4           0.94         0.90         0.94           54.3         68.8         60           0.71         0.62         0.65           37.1         45.7         37.1           0.80         0.75         0.79           33.6         40.4         38.2 |

| Table 5. Agreement of mGFR | R and eGFR Equations in Re | nal Dose Adjustment of Antimicrol | bials in Kidney Transplant Recipients |
|----------------------------|----------------------------|-----------------------------------|---------------------------------------|
|----------------------------|----------------------------|-----------------------------------|---------------------------------------|

Abbreviations: CG<sub>IBW,</sub> cockcroft-gault applying ideal body weight; CG<sub>TBW,</sub> cockcroft-gault applying total body weight; CKD-EPI, chronic kidney disease epidemiology collaboration; eGFR, estimated GFR; GFR, glomerular filtration rate; mGFR, measured GFR; MDRD, modification of diet in renal disease.

accuracy.<sup>18</sup> Also, some other studies revealed that bias, precision, and accuracy of MDRD was better than CKD-EPI in kidney transplant recipients.<sup>8,19</sup> Another study concluded that CKD-EPI was not superior to MDRD in estimating GFR in kidney transplant patients.<sup>20</sup> Results of one study on simultaneous pancreas-kidney transplant recipients, one year after transplant, showed that CKD-EPI and MDRD equations had low performance for GFR estimation in this population.<sup>21</sup> A review on the performance of creatinine-based eGFR equations in solid organ transplant recipients concluded that CKD-EPI and MDRD had the lowest bias and were more accurate than other equations in estimation of GFR in kidney transplant recipients.<sup>22</sup> In several studies, eGFR equations overestimated GFR in kidney transplant recipients,23-27 however in our study underestimation of kidney function by eGFR equations found evident which was compatible with the findings of White *et al.* studies.<sup>28,29</sup> This underestimation may be due to the evaluation of the patients in the early weeks after transplantation

during which the kidney recipients were taking high doses of corticosteroid which have direct catabolic action and can overproduce creatinine.<sup>30</sup>

Our results showed that the accuracy of  $CG_{IBW}$  was 14.3% lower than  $CG_{TBW}$ ; therefore, using ideal body weight to calculate creatinine clearance with CG equation in kidney transplant recipients may cause more inaccuracy, and using TBW is recommended.

Good correlations between mGFR and eGFR equations were found in our study, and MDRD had the best correlation but all of the correlation coefficients were lower than 0.9 that is the cutoff for a strong relationship. These findings were similar to Luis-Lima's study on kidney transplant patients after at least 6 months of transplantation.<sup>31</sup> These rates of correlations do not let us trust abovementioned eGFR methods in clinical practice.<sup>32</sup>

Regarding kidney function staging, the discordance rate of mGFR with CKD-EPI and MDRD was better than CG, but for all equations, discordance rates were more than 50%, which

|                               | mGFR         | CGTBW        | CGIBW        | MDRD         | CKD-EPI      |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|
| Ampicillin-Sulbactam          |              |              |              |              |              |
| Dose, mg/d*                   | 6000 ± 0     | 5657 ± 968   | 5571 ± 1065  | 5657 ± 968   | 5657 ± 968   |
| Difference, mg/d              |              | 343 ± 968    | 429 ± 1065   | 343 ± 968    | 343 ± 968    |
| SMD                           |              | 0.35         | 0.40         | 0.35         | 0.35         |
| Fluconazole                   |              |              |              |              |              |
| Dose, mg/d                    | 354 ± 82     | 303 ± 101    | 291 ± 101    | 286 ± 100    | 297 ± 101    |
| Difference, mg/d              |              | 51 ± 101     | 63 ± 105     | 66 ± 108     | 57 ± 104     |
| SMD                           |              | 0.51         | 0.59         | 0.64         | 0.55         |
| Ganciclovir                   |              |              |              |              |              |
| Dose, mg/d                    | 190 ± 95     | 135 ± 80     | 116 ± 53     | 111 ± 55     | 121 ± 62     |
| Difference, mg/d              |              | 55 ± 94      | 74 ± 84      | 79 ± 84      | 69 ± 87      |
| mGFR                          |              | 0.58         | 0.88         | 0.94         | 0.80         |
| Meropenem                     |              |              |              |              |              |
| Dose, mg/d                    | 2743 ± 433   | 2371 ± 646   | 2343 ± 639   | 2371 ± 690   | 2400 ± 695   |
| Difference, mg/d              |              | 371 ± 547    | 400 ± 553    | 371 ± 646    | 342 ± 639    |
| SMD                           |              | 0.68         | 0.72         | 0.58         | 0.54         |
| Piperacillin-Tazobactam       |              |              |              |              |              |
| Dose, mg/d                    | 13114 ± 1278 | 12150 ± 2246 | 11700 ± 2428 | 12150 ± 2196 | 11893 ± 2475 |
| Difference, mg/d              |              | 964 ± 1833   | 1414 ± 2188  | 964 ± 2134   | 1221 ± 2337  |
| SMD                           |              | 0.53         | 0.65         | 0.54         | 0.45         |
| Trimethoprim-Sulfamethoxazole |              |              |              |              |              |
| Dose, mg/d                    | 480 ± 0      | 453 ± 77     | 439 ± 92     | 453 ± 77     | 453 ± 77     |
| Difference, mg/d              |              | 27 ± 77      | 41 ± 92      | 27 ± 77      | 27 ± 77      |
| SMD                           |              | 0.35         | 0.45         | 0.35         | 0.35         |
| Valganciclovir                |              |              |              |              |              |
| Dose, mg/d                    | 675 ± 256    | 552 ± 290    | 495 ± 281    | 466 ± 249    | 511 ± 289    |
| Difference, mg/d              |              | 126 ± 269    | 180 ± 287    | 208 ± 234    | 164 ± 271    |
| SMD                           |              | 0.46         | 0.63         | 0.89         | 0.60         |
| Vancomycin                    |              |              |              |              |              |
| Dose, mg/d                    | 1650 ± 512   | 1436 ± 494   | 1357 ± 494   | 1429 ± 509   | 1436 ± 501   |
| Difference, mg/d              |              | 214 ± 563    | 293 ± 541    | 221 ± 517    | 214 ± 522    |
| SMD                           |              | 0.38         | 0.54         | 0.43         | 0.41         |

Table 6. Difference of Antimicrobials Daily Dose Between mGFR and eGFR Equations in Kidney Transplant Recipients

Abbreviations: CG<sub>IBW,</sub> cockcroft-gault applying ideal body weight; CG<sub>TBW,</sub> cockcroft-gault applying total body weight; CKD-EPI, chronic kidney disease epidemiology collaboration; eGFR, estimated GFR; GFR, glomerular filtration rate; mGFR, measured GFR; MDRD, modification of diet in renal disease; SMD, standardized mean difference.

\*Dose and dose differences were showed as mean ± SD.

was compatible with the findings of Luis-Lima *et al.* study.<sup>31</sup> More common kidney function underestimation in this study means that eGFR equations show kidney dysfunction worse than that actually is.

Kidney transplant recipients take a large number of medications and most of these drugs especially antimicrobials need dose adjustment according to the level of kidney function. Recent studies suggested that CKD-EPI, MDRD,  $CG_{TBW}$ , and  $CG_{IBW}$  respectively, are the equations that can be used for the renal dose adjustment of drugs in the general population.<sup>32</sup> To our knowledge, except for Stevens *et al.* study<sup>33</sup> that included kidney transplant recipients, there is no other study regarding the evaluation of discrepancies in drug dosing between mGFR and eGFR equations in this population. Stevens *et al.* compared the dose agreement of 15 medications between mGFR and eGFR equations and showed that in kidney transplant patients MDRD,  $CG_{IBW}$ , and  $CG_{TBW}$ had a higher rate of concordance with mGFR respectively. CKD-EPI formula was not included in this study and MDRD with approximately 70% agreement was the best equation for the renal dose adjustment of drugs in kidney transplant patients; however, its agreement rate was lower than that reported in non-transplant patients.<sup>33</sup> In our study,  $CG_{TBW}$  showed the best agreement with mGFR in the dosing of antimicrobials followed by CKD-EPI. eGFR Versus mGFR in Kidney Transplantation—Nabiee et al

Among 8 evaluated antimicrobial agents in the present study, the lowest rates of discordance in drug dosing between mGFR and eGFR methods were seen for trimethoprim-sulfamethoxazole and ampicillin-sulbactam. These findings may be due to no need for dose adjustment of these two drugs until reaching to stage 4 of kidney dysfunction (eGFR < 30 mL/min/1.73 m<sup>2</sup>). Conversely, ganciclovir and valganciclovir, showed the greatest number of dosing levels among these 8 antimicrobials and require dose modifications from the eGFR level of less than 70 and 60 mL/min, respectively; revealed the highest discordance in dosing between mGFR and eGFR methods. Based on our findings, only 45.7% of kidney transplant patients in the first days after transplantation get the correct doses; which is not an acceptable rate in the clinic. For 8 antimicrobials that we evaluated, underdosing were more common than overdosing when eGFR equations substituted for mGFR; therefore, using these eGFR equations in this situation might put the patients at risk of prophylaxis/treatment of infectious diseases failure.

In this study, we compared mGFR and eGFR in early days post kidney transplantation, at the first time that SCr was stable for 2 to 3 days and calculation of eGFR with equations was feasible. At this time many patients receive drugs that need renal dose adjustment. Most available studies in this field have been performed during later than first month after transplantation. However, this study suffers some limitations. It was a single center research with a low sample size. We did not include the Nankivell equation which was derived from kidney transplant recipients<sup>34</sup> and cystatin C based equations in our study.

## **CONCLUSION**

This study concluded that in general, the performance of GFR estimation equations is not acceptable in early days after kidney transplantation surgery and these formulas are not reliable in clinical practice especially for dosing of drugs that have high dosing levels. Although the overall performance of the  $CG_{TBW}$  method was better than MDRD and CKD-EPI equations; but this difference was not significant and the use of these eGFR formulas may be interchangeable. Up to developing a more accurate equation for estimating GFR in kidney transplant recipients, in centers

that measurement of GFR is not applicable, we recommend using the CG method applying TBW for drug dose adjustment. We suggest designing larger studies in the early post-transplant period using SCr and other markers as cystatin C to develop a more accurate equation.

## **CONFLICT OF INTEREST**

All authors declare no conflict of interest.

## ACKNOWLEDGMENT

This study has been supported by the National Institute for Medical Research Development (NIMAD) (grant number 971079).

## REFERENCES

- 1. Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012; 379(9811):165–80.
- Steffl JL, Bennett W, Olyaei AJ. The old and new methods of assessing kidney function. J Clin Pharmacol. 2012; 52(S1):63S-71S.
- Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976; 16:31–41.
- Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999; 130:461–70.
- Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009; 150:604–12.
- Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009; 20(11):2305–13.
- Santos J, Martins LS. Estimating glomerular filtration rate in kidney transplantation: Still searching for the best marker. World J Nephrol. 2015; 4(3):345-353.
- Buron F, Hadj-Aissa A, Dubourg L, et al. Estimating glomerular filtration rate in kidney transplant recipients: performance over time of four creatinine-based formulas. Transplantation. 2011; 92:1005–11.
- Bia M, Adey DB, Bloom RD, Chan L, Kulkarni S, Tomlanovich S. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Kidney Dis. 2010; 56(2):189– 218.
- Alangaden G, Thyagarajan R, Gruber SA, et al. Infectious complications after kidney transplantation : current epidemiology and associated risk factors. Clin Transplant. 2006; 20(1):401–9.
- Eyler RF, Shvets K. Clinical pharmacology of antibiotics. Am Soc Nephrol. 2019; 14(7):1080–90.
- KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3:1–150.

- Lexicomp online, Lexi-Drugs online, hudson, ohio: UpToDate, Inc.; 2013; Accessed April 5, 2020.
- Russell CD, Bischoff PG, Kontzen FN, et al. Measurement of glomerular filtration rate: Single injection plasma clearance method without urine collection. J Nucl Med. 1985; 26(11):1243–7.
- Gwet KL. Computing inter-rater reliability and its variance in the presence of high agreement. Br J Math Stat Psychol. 2008; 61(1):29–48.
- National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002; 39:S1-266.
- Kamaruzaman L, Mohd R, Zaki FM, Hod R, Aziz AA. Estimating glomerular filtration rate in adult kidney transplant recipients in the Asian population. Saudi J Kidney Dis Transplant. 2019; 30(3):587–96.
- Salvador CL, Hartmann A, Åsberg A, Bergan S, Rowe AD, Mørkrid L. Estimating glomerular filtration rate in kidney transplant recipients : comparing a novel equation with commonly used equations in this population. Kidney Transplant. 2017; 3:e332:1–7.
- Pöge U, Gerhardt T, Stoffel-Wagner B, Sauerbruch T, Woitas RP. Validation of the CKD-EPI formula in patients after renal transplantation. Nephrol Dial Transplant. 2011; 26(12): 4104–8.
- Masson I, Flamant M, Maillard N, et al. MDRD versus CKD-EPI equation to estimate glomerular filtration rate in kidney transplant recipients. Transplantation. 2013; 95(10): 1211–7.
- Dantec A, Selistre L, Lemoine S, et al. Performances of creatinine-based glomerular filtration rate estimating equations in simultaneous pancreas-kidney transplant recipients: a single center cohort study. Transpl Int. 2019; 32(1):75–83.
- Shaffi SK, Uhlig K, Perrone RD, et al. Performance of creatinine-based GFR estimating equations in solid organ transplant recipients. Am J Kidney Dis. 2014; 63(6):1007– 18.
- Pöge U, Gerhardt T, Palmedo H, Klehr HU, Sauerbruch T, Woitas RP. MDRD equations for estimation of GFR in renal transplant recipients. Am J Transplant. 2005; 5(6):1306–11.
- Gaspari F, Ferrari S, Stucchi N, et al. Performance of different prediction equations for estimating renal function in kidney transplantation. Am J Transplant. 2004; 4:1826–35.
- 25. Poggio ED, Wang X, Weinstein DM, et al. Assessing glomerular filtration rate by estimation equations in kidney

transplant recipients. Am J Transplant. 2006; 6:100-8.

- Kukla A, El-shahawi Y, Leister E, et al. GFR-estimating models in kidney transplant recipients on a steroid-free regimen. Nephrol Dial Transplant. 2010; 25:1653–61.
- Selistre L, Lemoine S, Dantec A, et al. Comparison of creatinine-based equations for estimating glomerular filtration rate in deceased donor renal transplant recipients. PLoS One. 2020; 15:1–14.
- White CA, Akbari A, Doucette S, Fergusson D, Knoll GA. Estimating glomerular filtration rate in kidney transplantation: Is the new chronic kidney disease epidemiology collaboration equation any better? Clin Chem. 2010; 56(3):474–7.
- White CA, Akbari A, Hussain N, et al. Estimating glomerular filtration rate in kidney transplantation : a comparison between serum creatinine and cystatin C – based methods. Am Soc Nephrol. 2005; 16:3763–70.
- Andreev E, Koopman MG, Arisz L. A rise in plasma creatinine that is not a sign of renal failure: Which drugs can be responsible? J Intern Med. 1999; 246(3):247–52.
- Luis-Lima S, Marrero-Miranda D, González-Rinne A, et al. Estimated glomerular filtration rate in renal transplantation: The nephrologist in the mist. Transplantation. 2015; 99(12):2625–33.
- Hornum M, Feldt-Rasmussen B. Drug dosing and estimated renal function-any step forward from effersoe? Nephron. 2017; 136(4):268–72.
- Stevens LA, Nolin TD, Richardson MM, et al. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am J Kidney Dis. 2009; 54(1):33–42.
- Nankivell B, Gruenewald S, Allen RDM, Chapman JR. Prediction of glomerular filtration rate after kidney transplantation. Transplantation. 1995; 59(12):1683–9.

Correspondence to:

Simin Dashti-Khavidaki, MD

Professor of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O.Box: 1417614411, Tehran, Iran

Tel: 0098 21 6695 4709 Fax: 0098 21 6695 4709 E-mail: dashtis@sina.tums.ac.ir

Received December 2020 Revised March 2021 Accepted May 2021